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system posed in a macroscopic domain. The mathematical techniques include energy-like
estimates and compactness arguments.
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1. Introduction

We are interested in quantifying the effect of coupled macroscopic fluxes1 on the aggre-
gation, fragmentation and deposition of large populations of colloids traveling through a
porous medium. To do so, we are using a well-posed partly-dissipative coupled system of
quasilinear parabolic equations posed in a connected open set Ω with sufficiently smooth
boundary. The particular structure of the system has been obtained via periodic homog-
enization techniques in [2] [see e.g. Ref. [3] for a methodological upscaling procedure of
reactive flows through arrays of periodic microstructures].

The primary motivation of this paper is to develop and analyze appropriate numerical
schemes to compute at macroscopic scales approximate solutions to our thermo-diffusion
system with Smoluchowski interactions. Accounting for the interplay between heat, diffu-
sion, attraction-repulsion, and deposition of the colloidal particles is of paramount impor-
tance for a number of applications including the dynamics of the colloidal suspension in
natural or man-made products (e.g. milk, paints, toothpaste) [4], drug-delivery systems
[5], hierarchical assembly of biological tissues [6], group formation in actively interacting
populations [7], or heat stocks in porous materials [8]. Further details on colloids and
their practical relevance are given in [9, 10], e.g.

The discretizations shown in this paper have been successfully used in [11] to capture
the effect of multiscale aggregation and deposition mechanisms on the colloids dynamics
traveling within a saturated porous medium in the absence of thermal effects. Now, we are
preparing the stage to include the Soret and Dufour transport contributions – cross-effects
between diffusion and heat conduction; for more details on the macroscopic modeling of
thermo-diffusion, we refer the reader to the monograph by De Groot and Mazur [1]. The
a priori estimates are obtained in a similar fashion as for problems involving reactive flow
in porous media (see, for instance, [12, 13] and references cited therein), however specifics
of the cross transport, interaction terms, and of the non-dissipative (ode) structure play
here an important role and need to be treated carefully. For the numerical analysis of
case studies in cross diffusion, we refer the reader for instance to [14, 15] and [16]. Note
that there is not yet a unified mathematical approach to deal with general cross-diffusion
or thermo-diffusion systems. Due to the presence of the nonlinearly coupled transport
terms, essential difficulties arise in controlling the temperature gradients (and the gradi-
ents in the concentrations of colloidal populations) especially in more space dimensions
(see e.g. [17]), the problem sharing many common features with the Stefan-Maxwell sys-
tem for multicomponent mixtures (compare Refs. [18, 19, 20] and the literature mentioned
therein).

In this paper, we investigate the semidiscrete as well as the fully discrete a priori error
analysis of the finite elements approximation of the weak solution to a thermo-diffusion
reaction system posed in a macroscopic domain that allows for aggregation, dissolution
as well as deposition of colloidal species. The main results are summarized in Theorem
4.7 and Theorem 5.2. The mathematical techniques used in the proofs include energy-like
estimates and compactness arguments, exploiting the structure of the nonlocal coupling.
Once these a priori estimates are proven and corrector estimates for the homogenization
process explained in [2] become available, then the next natural analysis step is to prepare

1In this context, the fluxes are driven by a suitable combination of heat and diffusion gradients [1].
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a functional framework for the design optimally convergent MsFEM schemes approximat-
ing, very much in the spirit of [21, 22], multiscale formulations of our thermo-diffusion
system.

The paper has the following structure: Section 2 presents the setting of the model
equations and briefly summarizes the meaning of the parameters and model components.
We anticipate already at this point the main results. In Section 3, we list the main
mathematical analysis aspects of our choice of thermo-diffusion system and briefly recall
a collection of approximation theory results that are used in the sequel. Section 4 and
Section 5 constitute the bulk of the paper. This is the place where we give the details of
the proof of the semidiscrete and fully discrete a priori error control, i.e. the proofs for
Theorem 4.7 and Theorem 5.2.

2. Formulation of the problem. Main results

Let I denote an open sub-interval within the time interval (0, T ], and let x ∈ Ω be the
variable pointing out the space position. The unknowns of the system are the temperature
field θ, the mobile colloidal populations ui (i ∈ {1, . . . , N}), and the immobile (already
deposited) colloidal populations vi (i ∈ {1, . . . , N}). N ∈ N represents the amount of the
monomers in the largest colloidal species considered. All unknowns depend on both space
and time variables (x, t) ∈ Ω× I.

Definition 1. Given δ > 0, we introduce the mollifier:

Jδ(s) :=

{
Ce1/(|s|2−δ2) if |s| < δ,

0 if |s| ≥ δ,
(1)

where the constant C > 0 is selected such that∫
Rd

Jδ = 1,

see [23] for details.

Definition 2. Using Jδ from (1), define the mollified gradient:

(2) ∇δf := ∇
[∫

B(x,δ)

Jδ(x− y)f(y)dy

]
,

where B(x, δ) ⊂ Rd is a ball centered in x ∈ Ω with radius δ, d ≥ 1.

With Definition 2 at hand, the following inequalities hold for all f ∈ L∞(Ω) and
g ∈ Lp(Ω;Rd) (with 1 ≤ p ≤ ∞):

‖∇δf · g‖Lp(Ω) ≤ C‖f‖L∞(Ω)‖g‖Lp(Ω;Rd),(3)

‖∇δf‖Lp(Ω) ≤ C‖f‖L2(Ω),(4)

where the constant C depends on the choice of the parameter δ and structure of the
mollifier Jδ.
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For all t ∈ I, the setting of our thermo-diffusion equations is the following: Find the
triplet (θ, ui, vi) satisfying

∂tθ +∇ · (−K∇θ)−
N∑
i=1

Ti∇δui · ∇θ = 0 in Ω,(5)

∂tui +∇ · (−Di∇ui)− Fi∇δθ · ∇ui+(6)

+ Aiui −Bivi = Ri(ui) in Ω,(7)

∂tvi = Aiui −Bivi in Ω,(8)

−K∇θ · n = 0 on ∂Ω,(9)

ui = 0 on ∂Ω,(10)

θ(0, ·) = θ0(·) in Ω,(11)

ui(0, ·) = u0
i (·) in Ω,(12)

vi(0, ·) = v0
i (·) in Ω.(13)

Here, we use the Smoluchowski population balance equation, originally proposed in
[24], to account for the production terms Ri(u):

We want to model the transport of aggregating colloidal particles under the influence
of thermal gradients. We use to account for colloidal aggregation:

Ri(u) :=
1

2

∑
k+j=i

βkjukuj −
N∑
j=1

βijuiuj, i > 1

Colloidal aggregation rates βij are described in more detail in [10]. Here, it’s enough
for us that they are positive and bounded.

Here for all i ∈ {1, . . . , N}, the parameters K, Di, Fi and Ti are effective transport
coefficients for heat conduction, colloidal diffusion as well as Soret and Dufour effects.
Furthermore, Ai and Bi are effective deposition coefficients. θ0 is the initial temperature
profile, while u0

i and v0
i are the initial concentrations of colloids in mobile, and respectively,

immobile state. General motivation on the ingredients of this system (particularly on
Soret and Dufour effects) can be found in [1]. Note that as direct consequence of fixing
the threshold N , the system coagulates colloidal species (groups) until size N only.

This particular structure of the system has been derived in [2] by means of periodic
homogenization arguments (two-scale convergence), scaling up the involved physicochem-
ical processes from the pore scale (microscopic level, representative elementary volume
(REV)) to a macroscopically observable scale.

Remark 2.1. Theorem 4.4 in [2] ensures the weak solvability of the system (5)–(13).
Furthermore, under mild assumptions on the data and the parameters the weak solution
is positive a.e. and satisfies a weak maximum principle. The basic properties of the weak
solutions to (5)–(13) are given in Section 3.

Denoting by θh(t) the continuous-in-time and semidiscrete-in-space approximation of
θ(t) and by θh,n the corresponding fully discrete approximation, with similar notation for
the other unknowns, and taking all norms to mean L2 unless explicitly specified otherwise,
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we can formulate our main result: For all t, tn ∈ I, the following a priori estimates hold:

‖θh(t)− θ(t)‖+
N∑
i=1

‖uhi (t)− ui(t)‖+
N∑
i=1

‖vhi (t)− vi(t)‖

≤ C1‖θ0,h − θ0‖+ C2(‖u0,h
i − u0

i ‖+ ‖v0,h
i − v0

i ‖) + C3h
2(14)

and

‖θh,n − θn‖+
N∑
i=1

‖uh,ni − uni ‖+
N∑
i=1

‖vh,ni − vni ‖

≤ C4‖θh,0 − θ0‖+ C5

(
N∑
i=1

‖uh,0i − u0
i ‖+

N∑
i=1

‖vh,0i − v0
i ‖

)
+ C6(h2 + τ).(15)

The constants C1, . . . , C6 depend on data, but are independent of the grid parameters
h and τ . The hypotheses and the results under which (14) and (15) hold are stated in
Theorem 4.7 and Theorem 5.2, respectively.

The following Sections focus exclusively on the proof of these inequalities.

3. Concept of weak solution. Technical preliminaries. Available results.

Our concept of weak solution is detailed as follows:

Definition 3. The triplet (θ, ui, vi) is a solution to (5)-(13) if the following holds:

θ, ui ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)),

vi ∈ H1(0, T ;L2(Ω)),
(16)

and for all t ∈ J and φ ∈ H1(Ω) :

(∂tθ, φ) + (K∇θ,∇φ)−
N∑
i=1

(Ti∇δui · ∇θ, φ) = 0,(17)

(∂tui, φ) + (Di∇ui,∇φ)− (Fi∇δθ · ∇ui, φ)

+ (Aiui −Bivi, φ) = (Ri(u), φ),(18)

(∂tvi, φ) = (Aiui −Bivi, φ).(19)

To be able to ensure the solvability of our thermo-diffusion problem, we assume that
the following set of assumptions on the data, i.e. (A1)-(A2) hold true:

(A1): Ti, Fi, Ai, Bi are positive constants for i ∈ {1, . . . , N}, and there exist m and
M such that: 0 < m ≤ K ≤M and 0 < m ≤ Di ≤M .

(A2): θ
0 ∈ L∞+ (Ω) ∩H2(Ω), u0

i ∈ L∞+ (Ω) ∩H2(Ω), v0
i ∈ L∞+ (Γ) for i ∈ {1, . . . , N}.

Fix h > 0 sufficiently small and let Th be a triangulation of Ω with

max
τ∈Th

diam(τ) ≤ h.

Let Sh denote the finite dimensional space of continuous functions on Ω that reduce to
linear functions in each of the triangles of Th and vanish on ∂Ω. Let {Pj}Nh

j=1 be the
interior vertices of Th with Nh ∈ N. A function in Sh is then uniquely determined by
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its values at the points Pj. Let Φj be the pyramid function in Sh which takes value 1 at

Pj, but vanishes at the other vertices. Then {Φj}Nh
j=1 forms a basis for Sh. Consequently,

every ϕ in Sh can be uniquely represented as

(20) ϕ(x) =

Nh∑
j=1

αjΦj(x), with αj := Φ(Pj), j ∈ {1, . . . , Nh},

see e.g. Ref. [25].
A smooth function σ defined on Ω which vanishes on ∂Ω can be approximated by its

interpolant Ihσ in Sh defined as:

(21) Ihσ(x) :=

Nh∑
j=1

σ(Pj)Φj(x).

We denote below by ‖ · ‖ the norm of the space L2(Ω) and by ‖ · ‖s that in the Sobolev
space Hs(Ω) = W s

2 (Ω) with s ∈ R. If s = 0 we suppress the index.
We recall that for functions v lying in H1

0 (Ω), the objects ‖∇v‖ and ‖v‖1 are equivalent
norms. Let us also recall Friedrichs’ lemma (see, for instance, [26, 27]): there exist
constants cF > 0 and CF > 0 (depending on Ω, see Ref. [28] for explicit expressions for
these constants) such that

(22) cF‖σ‖1 ≤ CF‖∇σ‖ ≤ ‖σ‖1, ∀σ ∈ H1
0 (Ω).

The following error estimates for the interpolant Ihσ of σ [cf. (21)] are well-known (see,
e.g., [26] or [27]), namely for all σ ∈ H2(Ω) ∩H1

0 (Ω) we have

‖Ihσ − σ‖ ≤ Ch2‖σ‖2(23)

‖∇(Ihσ − σ)‖ ≤ Ch‖σ‖2.(24)

Testing the equations (5)-(6) with ϕ ∈ Sh leads to the following semi-discrete weak
formulation of (5)-(13) as given in Definition 4.

Definition 4. The triplet (θh, uhi , v
h
i ) is a semidiscrete solution to (5)-(13) if the following

identities hold true for all t ∈ I and ϕ ∈ Sh:

(∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · ∇θh, ϕ) = 0(25)

(∂tu
h
i , ϕ) + (Di∇uhi ,∇ϕ)− (Fi∇δθh · ∇uhi , ϕ)

+ (Aiu
h
i −Biv

h
i , ϕ) = (Ri(u

h), ϕ)(26)

(∂tv
h
i , ϕ) = (Aiu

h
i −Biv

h
i , ϕ)(27)

θh(0) = θ0,h(28)

uhi (0) = u0,h
i(29)

vhi (0) = v0,h
i .(30)

Here, θ0,h, u0,h
i , and v0,h

i are suitable approximations of θ0, u0
i , and v0

i respectively in the
finite dimensional space Sh.
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Remark 3.1. Note that vi as a solution to (8) can be expressed as:

vi(t) =

(∫ t

0

Aiui(s)e
Bisds

)
e−Bit + v0

i e
−Bit for all t ∈ I.(31)

We will make this substitution later and also use (31) to obtain an error estimate for vhi
based on the error estimate for uhi . This path can be followed due to the linearity of the
equation. If the right-hand side of the ordinary differential equations becomes nonlinear,
then a one-sided Lipschitz structure is needed to allow for the Gronwall argument to work.

Remark 3.2. The existence of solutions in the sense of Definition 3 is ensured by pe-
riodic homogenization arguments in [2], while the existence of solutions in the sense of
Definition 4 follows by standard arguments. We omit to show the details of the exis-
tence proofs. Note that the existence of the respective solutions is nevertheless re-obtained
here by straightforward compactness arguments. The proof of uniqueness of both kinds of
solutions follows the lines of [2].

We represent the approximate solutions to the system (5)–(13) by means of the standard
Galerkin Ansatz as:

uhi (x, t) :=

Nh∑
j=1

αij(t)Φj(x),

θh(x, t) :=

Nh∑
j=1

βj(t)Φj(x),

vhi (x, t) :=

Nh∑
j=1

γij(t)Φj(x)

for all (x, t) ∈ Ω×I. Based on the Galerkin projections, the semidiscrete model equations
read:

Nh∑
j=1

β′ij(t)(Φj,Φk) +

Nh∑
j=1

βij(Ki∇Φj,∇Φk)

−
N∑
i=1

Ti

Nh∑
j=1

Nh∑
l=1

βij(t)αil(t)(∇δΦl · ∇Φj,Φk) = 0(32)

Nh∑
j=1

α′ij(t)(Φj,Φk) +

Nh∑
j=1

αij(Di∇Φj,∇Φk)

− Fi
Nh∑
j=1

Nh∑
l=1

αij(t)βl(t)(∇δΦl · ∇Φj,Φk) = (Ri(

Nh∑
j=1

αij(t)Φj),Φk).(33)
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To abbreviate the writing of (32)-(33), we define:

αi := αi(t) = (αi1(t), . . . , αi,Nh
(t))T ,

β := β(t) = (β1(t), . . . , βNh
(t))T ,

γi := γi(t) = (γi1(t), . . . , γi,Nh
(t))T ,

G := (gjk), gjk := (Φj,Φk),

Hu
i := (huijk), h

u
ijk := (Di∇Φj,∇Φk),

Hθ := (hθjk), h
θ
jk := (K∇Φj,∇Φk),

M := (mjkl), mjkl := (∇δΦl · Φj,Φk).

Then (32)-(33) become:

(34)



Gβ′ +Hθβ −
∑N

i=1 Tiα
T
i Mβ = 0

Gα′i +Hu
i αi − FiβTMαi +G(Aiαi −Biγi)

= (Ri(
∑Nh

j=1 αΦj),Φk)

Gγ′i = AiGαi −BiGγi
β(0) = β0

αi(0) = α0
i

γi(0) = γ0
i .

Note that (34) is a nonlinear system of coupled ordinary differential equations. Based
on (A1)–(A2), we see not only that Hθ and Hu

i are positive definite, but also that the
right-hand side of the differential equations form a global Lipschitz continuous function,
fact which ensures the well-posedness of the Cauchy problem (34) on I and eventually
on its continuation on the whole interval (0, T ]; we refer the reader to [29] for this kind
of extension arguments for ordinary differential equations. Essentially, we get a unique
solution vector

(β, αi, γi) ∈ C1(Ī)N
h × C1(Ī)NN

h × C1(Ī)NN
h

satisfying (34); see [30] for the proof of the global Lipschitz property of the right-hand
side of a similar system of ordinary differential equations.

4. Semi-discrete error analysis

Our goal is to estimate the a priori error between the weak solutions of (60)–(65) and
the weak solutions of (5)–(13). We proceed very much in the spirit of Thomeé [31]; cf.,
for instance, Chapter 13 and Chapter 14.

We write the error as a sum of two terms:

(35) θh − θ = (θh − θ̃h) + (θ̃h − θ) = ψ + ρ.

In (35), θ̃h is the elliptic projection in Sh of the exact solution θ, i.e. θ̃h satisfies for all
t ≥ 0:

(K∇(θ̃h(t)− θ(t)),∇ϕ)−
N∑
i=1

(Ti∇δui · ∇(θ̃h(t)− θ(t)), ϕ) = 0(36)
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for all ϕ ∈ Sh.

Lemma 4.1. Let k ∈ C1(Ω̄), b ∈ L∞(Ω,R3), and ∇·b ∈ L∞(Ω). Suppose that γ ∈ H1
0 (Ω)

is a weak solution to the elliptic boundary-value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω.(37)

Additionally, assume

∂Ω ∈ C2.(38)

Then we have

‖γ‖2 ≤ C‖δ‖.(39)

Proof. The proof of this result is a particular case of the proof of Theorem 4 given in [23,
p. 317]. We omit to repeat the arguments here. �

Remark 4.2. The condition (38) can be relaxed to Ω being a convex polygon, see [32,
p. 147] (compare Theorem 3.2.1.2 and Theorem 3.2.1.3).

Lemma 4.3. Let k ∈ L2(Ω) and b ∈ L∞(Ω,R3), and k(x) ≥ m > 0, and m > ‖b‖∞CF ,
where CF is the constant entering (22). Suppose that γ ∈ H1

0 (Ω) is a weak solution of the
elliptic boundary-value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω.(40)

Then we have

‖γ‖2 ≤ C‖δ‖.(41)

Proof. We can directly verify that

m‖γ‖2 ≤ (k∇γ,∇γ) = (δ, γ) + (b · γ,∇γ)

≤ ‖δ‖‖γ‖+ ‖b‖∞‖γ‖‖∇γ‖
≤ ‖δ‖‖γ‖+ ‖b‖∞CF‖∇γ‖2.

Here, we used the Friedrichs inequality (22). Since m > ‖b‖∞CF , we have (41). �

Lemma 4.4. Take k ∈ L∞(Ω)∩H1(Ω) and b ∈ L∞(Ω,R3)∩H1(Ω,R3) and assume that
there exist m and M such that 0 < m ≤ k(x) ≤M for all x ∈ Ω. Let w ∈ H2(Ω)∩H1

0 (Ω)
satisfying

(k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ) = 0 for all ϕ ∈ Sh.(42)

Then the following estimates hold:

‖∇(wh − w)‖ ≤ C1h‖w‖2(43)

‖wh − w‖ ≤ C0h
2‖w‖2.(44)

Here, the constant C1 depends on Th, m, and M . The constant C0 depends additionally
on the upper bound of ∇k and b in the corresponding L∞-norm.
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Proof. We proceed very much in the spirit of Ciarlet estimates. By (A1), we have that

m‖∇(wh − w)‖2 ≤ (k∇(wh − w),∇(wh − w)) =

(k∇(wh − w),∇(wh − ϕ)) + (k∇(wh − w),∇(ϕ− w)) =

(b · ∇(wh − w), wh − ϕ) + (k∇(wh − w),∇(ϕ− w)) ≤
‖b‖∞‖∇(wh − w)‖‖wh − ϕ‖+M‖∇(wh − w)‖‖∇(ϕ− w)‖

Take ϕ := Ihw - the Clement interpolant of w. Then we have:

m‖∇(wh − w)‖ ≤ ‖b‖∞(‖wh − w‖+ ‖Ihw − w‖)
+ M‖∇(Ihw − w)‖ ≤ C1h‖w‖2,(45)

which yields

‖∇(wh − w)‖ ≤ (C1h+ C2‖b‖∞h2)‖w‖2

+
‖b‖∞
m
‖wh − w‖.(46)

It is worth noting that (46) leads to (43) when we show later that (at least)

‖wh − w‖ ≤ Ch‖w‖2.

Next, we show (44) using a duality argument. Let γ ∈ H1
0 (Ω) solve the problem

−∇ · (k∇γ − bγ) = δ in Ω, γ = 0 on ∂Ω.

Then

(wh − w, δ) = (wh − w,−∇ · (k∇γ − bγ))

= (k∇(wh − w),∇γ)− (b · ∇(wh − w), γ)

= (k∇(wh − w),∇(γ − ϕ))− (b · ∇(wh − w), γ − ϕ)

+ (k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ).

Let ϕ := Ihγ and use (42):

(wh − w, δ) ≤M‖∇(wh − w)‖‖∇(γ − Ihγ)‖
+ ‖b‖∞‖∇(wh − w)‖‖γ − Ihγ‖.

Using the standard approximation properties for Ihγ, we get:

(wh − w, δ) ≤ (C1Mh+ C2‖b‖∞h2)‖γ‖2‖∇(wh − w)‖.(47)

Using δ := wh − w in (47), and either Lemma 4.1 or Lemma 4.3, we obtain:

‖wh − w‖ ≤ (C1Mh+ C2‖b‖∞h2)C3‖∇(wh − w)‖.(48)

Using (48) in (46) leads to:

‖∇(wh − w)‖ ≤ C1h‖w‖2 + C2h‖∇(wh − w)‖.(49)

After solving the recurrence in (49), (43) is proven, and hence (44) follows from (48). �

Lemma 4.5. Let θ̃h be defined by (36), and let ρ := θ̃h− θ. Then the following estimates
hold:

‖ρ(t)‖+ h‖∇ρ(t)‖ ≤ C(θ)h2 t ∈ I,(50)

‖ρt(t)‖+ h‖∇ρt(t)‖ ≤ C(θ)h2 t ∈ I.(51)
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Proof. Using Lemma 4.4, we have that ‖∇ρ‖ ≤ C1h‖θ‖2 and ρ ≤ C0h
2‖θ‖2, so (50)

follows by adding these estimates.
To obtain (51), we differentiate (36) with respect to time:

(k∇ρt,∇ϕ)− (bt · ∇ρ+ b · ∇ρt, ϕ) = 0

Assuming k uniformly bounded, which it is, since it doesn’t depend on θ in our case:

m‖∇ρt‖2 ≤ (k∇ρt,∇ρt) = (k∇ρt,∇(θ̃ht − ϕ+ ϕ− θt))
= (k∇ρt,∇(ϕ− θt)) + (k∇ρt,∇(θ̃h − ϕ))

= (k∇ρt,∇(ϕ− θt)) + (bt · ∇ρ+ b · ∇ρt, θ̃h − ϕ)

We have used (36) in the last equation since (θ̃h − ϕ) ∈ Sh. Thus we get that

m‖∇ρt‖2 ≤M‖∇ρt‖‖∇(ϕ− θt)‖+ (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)‖θ̃h − ϕ‖

Now, take ϕ := Ihθt to obtain:

m‖∇ρt‖ ≤M‖∇ρt‖Ch‖θt‖2 + (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)(‖ρt‖+ Ch‖θt‖2)

≤ m

2
‖∇ρt‖2 + Ch2‖θt‖2

2 + Ch(‖ρt‖+ Ch‖θt‖2)

+ C2(u)‖∇ρt‖‖ρt‖+ C2(u)Ch‖∇ρt‖‖θt‖2.

Using Young’s inequality a few times, it finally follows that:

‖∇ρt‖2 ≤ C1h
2 + C2‖ρt‖2,(52)

where C1 and C2 are independent of h.
Now, we use the duality argument as in Lemma 4.4 to gain:

(ρt, δ) = (ρt,−∇ · (k∇γ − bγ)) = (k∇ρt,∇γ)− (b · ∇ρt, γ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ) + (k · ∇ρt,∇ϕ)− (b · ∇ρt, ϕ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ).

Choosing ϕ := Ihγ and δ := ρt yields

‖ρt‖2 ≤ C1‖∇ρt‖(Mh+ ‖b‖∞h2)‖γ‖2

≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖δ‖ ≤
≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖ρt‖.

We now see that

‖ρt‖ ≤ C(u, θ)h‖∇ρt‖.(53)

Combining (52) and (53) leads to convenient recurrence relations, thus proving the state-
ment of the Lemma. �

Lemma 4.6. Let θ̃h be defined by (36). Then:

‖∇θ̃h(t)‖∞ ≤ C(θ) t ∈ I.(54)

Proof. We rely now on the inverse estimate:

‖∇ϕ‖∞ ≤ Ch−1‖∇ϕ‖ ∀ϕ ∈ Sh(55)
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The statement (55) is trivial to prove for linear approximation functions, since in this case
∇ϕ is constant on each triangle. Using Lemma 4.5 and the known error estimate for Ihθ,
we have:

‖∇(θ̃h − Ihθ)‖∞ ≤ Ch−1‖∇(θ̃h − Ihθ)‖
≤ Ch−1(‖∇ρ‖+ ‖∇(Ihθ − θ)‖) ≤ C(θ).(56)

�

The main result on the a priori error control for the semi-discrete FEM approximation
to our original system is given in the next Theorem.

Theorem 4.7. Let (θ, ui, vi) solve (16)-(19) and (θh, uhi , v
h
i ) solve (60)-(65), and let as-

sumptions (A1)-(A2) hold. Then the following inequalities hold:

‖θh(t)− θ(t)‖ ≤ C‖θ0,h − θ0‖+ C(θ)h2 t ∈ I,(57)

‖uhi (t)− ui(t)‖ ≤ C‖u0,h
i − u0

i ‖+ C(ui)h
2 t ∈ I, i ∈ {1, . . . , N}.(58)

Proof. With an error splitting as in (35), it is enough to show a suitable upper bound for

ψ := θh − θ̃h. We proceed in the following manner:

(∂tψ, ϕ) + (K∇ψ,∇ϕ) = (∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · θh, ϕ)

+
N∑
i=1

(Ti∇δuhi · θh, ϕ)− (∂tθ̃
h, ϕ)− (K∇θ̃h,∇ϕ)

= −(∂t(θ + ρ), ϕ)− (K∇(θ + ρ),∇ϕ) +
N∑
i=1

(Ti∇δuhi · θh, ϕ)

= −(∂tρ, ϕ)− (K∇ρ,∇ϕ) +
N∑
i=1

(Ti∇δui · ∇ρ, ϕ)

+
N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ), ϕ).

After eliminating the terms that vanish due to the definition of the elliptic projection, we
obtain the following identity:

(∂tψ, ϕ) + (K∇ψ,∇ϕ)

= −(∂tρ, ϕ) +
N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · (∇θ +∇ρ)), ϕ).(59)

We can deal with the second term on the right hand side of (59) as follows:

∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ
= (∇δuhi −∇δui) · ∇θh +∇δui · (∇θh −∇θ −∇ρ)

= (∇δuhi −∇δui)(∇ψ +∇θ̃h) +∇δui · ∇ψ
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Now using ϕ := ψ as a test function and relying on the bound

‖∇θ̃h‖∞ < C(θ)

(available cf. Lemma 4.6), we obtain:

1

2
∂t‖ψ‖2 +m‖∇ψ‖2 ≤ 1

2
‖∂tρ‖2 +

1

2
‖ψ‖2

+
N∑
i=1

(C‖uhi − ui‖2 + ε‖∇ψ‖2 + ε‖ui‖∞(‖∇ρ‖2 + ‖∇ψ‖2) + ‖ψ‖2).

Gronwall’s inequality gives

‖ψ(t)‖2 ≤ ‖ψ(0)‖2 + C

∫ t

0

(‖∂tρ‖2 + ‖∇ρ‖2 +
N∑
i=1

‖uhi − ui‖2).

The estimate

‖ψ(0)‖ ≤ ‖θh,0 − θ0‖+ ‖θ̃h(0)− θ0‖ ≤ ‖θh,0 − θ0‖+ Ch2‖θ0‖2,

together with the estimate ‖uhi − ui‖ ≤ C(u)h2 give the statement of the Theorem. �

5. Fully discrete error analysis

Let τ > 0 to be a small enough time step and use tn := τn while denoting θn := θ(tn)
and uni := ui(tn). The discrete in space approximations of θn and uni are denoted as θh,n

and uh,ni , respectively.

Definition 5. The triplet (θh,n, uh,ni , vh,ni ) is a discrete solution to (5)-(13) if the following
identities hold for all n ∈ {1, . . . , N} and ϕ ∈ Sh:

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) = 0,(60)

1

τ
(uh,n+1

i − uh,ni , ϕ) + (Di∇uh,n+1
i ,∇ϕ)− (Fi∇δθh,n · ∇uh,n+1

i , ϕ)

+ (Aiu
h,n+1
i −Biv

h,n+1
i , ϕ) = (Ri(u

h,n), ϕ),(61)

1

τ
(vh,n+1
i − vh,ni , ϕ) = (Aiu

h,n+1
i −Biv

h,n+1
i , ϕ),(62)

θh,0 = θ0,h,(63)

uh,0i = u0,h
i ,(64)

vh,0i = v0,h
i .(65)

Here, θ0,h, u0,h
i , and v0,h

i are the approximations of θ0, u0
i , and v0

i respectively in the finite
dimensional space Sh.

Remark 5.1. To treat (60) and (61), we use a semi-implicit discretization very much
in the spirit of Ref. [33]. Note however that other options for time discretization are
possible.
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Theorem 5.2. Let (θ, ui, vi) solve (16)-(19) and (θh, uhi , v
h
i ) solve (60)-(65), and assump-

tions (A1)-(A2) hold. Then the following inequality holds:

‖θh,n − θn‖+
N∑
i=1

‖uh,ni − uni ‖+
N∑
i=1

‖vh,ni − vni ‖

≤ C1‖θh,0 − θ0‖+ C2

N∑
i=1

‖uh,0i − u0
i ‖+ C3

N∑
i=1

‖vh,0i − v0
i ‖

+ C4(h2 + τ).(66)

The constants C1, . . . , C4 entering (66) depend on controllable norms of θ, ui, but are
independent of h and τ .

Proof. Similar with the methodology of the proof of the semidiscrete a priori error esti-
mates, we split the error terms into two parts:

θh,n − θn = ρθ,n + ψθ,n := (θh,n −Rhθ
n) + (Rhθ

n − θn),(67)

uh,ni − uni = ρui,n + ψui,n := (uh,ni −Rhu
n
i ) + (Rhu

n
i − uni ),(68)

where Rhθ and Rhui are the Ritz projections defined by:

(K∇(Rhθ − θ),∇ϕ) = 0, ∀ϕ ∈ Sh,(69)

(Di∇(Rhui − ui),∇ϕ) = 0, ∀ϕ ∈ Sh, i ∈ {1, . . . , N}.(70)

Here, ψθ,n and ψui,n satisfy the following bounds:

‖ψθ,n‖ ≤ Ch2‖θn‖2,(71)

‖ψui,n‖ ≤ Ch2‖uni ‖2,(72)

so it remains to bound from above ρθ,n and ρui,n. We can write for ρθ,n the following
identities:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ) =

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) +
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)

− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)− (K∇Rhθ

n+1,∇ϕ)

=
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)− (K∇θn+1,∇ϕ)

=
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)

+ (∂tθ
n+1, ϕ)−

N∑
i=1

(Ti∇δun+1
i · ∇θn+1, ϕ).
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After re-arranging the terms in the former expression, we obtain:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ)

=
N∑
i=1

(Ti(∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1), ϕ)︸ ︷︷ ︸

A

+ (∂tθ
n+1 − 1

τ
(θn+1 − θn), ϕ)︸ ︷︷ ︸
B

− 1

τ
(ψθ,n+1 − ψθ,n, ϕ)︸ ︷︷ ︸

C

.

Let us deal first with estimating the term C, then B, and finally, the term A.
To estimate the term C, we use our semidiscrete estimate for ‖∂tψ‖ stated in Lemma

4.5, we get:

‖1

τ
(ψθ,n+1 − ψθ,n)‖ = ‖1

τ

∫ tn+1

tn
∂tψ

θ‖ ≤ CC(θ, u)h2.

The term B can be estimated as follows:

B = (
1

τ

∫ tn+1

tn
(s− tn)∂ttθ(s)ds, ϕ) ≤ τ

2
( sup
[tn,tn+1]

|∂ttθ|)‖ϕ‖ = CB(θ)τ‖ϕ‖.

Finally, to tackle the term A, we proceed as follows:

A = (∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1, ϕ)

= (∇δuh,ni · (∇θh,n+1 −∇θn+1) +∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)

≤ ε‖uh,ni ‖∞(‖∇ρn+1‖2 + ‖∇ψn+1‖2) + Cε‖ϕ‖2

+ (∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)︸ ︷︷ ︸

D

.

At its turn, the term D can be expressed as:

D = (∇θn+1 · (∇δuh,ni −∇δuni ), ϕ) + (∇θn+1 · (∇δuni −∇δun+1
i ), ϕ)

≤ ‖∇θn+1‖∞(ε‖∇δ(uh,ni − uni )‖2 + Cε‖ϕ‖2) + (∇θn+1 ·
∫ tn+1

tn
∂t∇δui, ϕ)︸ ︷︷ ︸

E

.

Finally, the term E can be estimated as:

E ≤ ‖∇θn+1‖∞‖∂t∇δui‖∞τ‖ϕ‖.

Adding together all the terms, and then substituting ϕ := ρθ,n+1 we finally obtain:

1

τ
‖ρθ,n+1‖2 +m‖∇ρθ,n+1‖2 ≤ 1

τ
‖ρθ,n‖2 + (CB(θ)τ)2

+ (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2 + C‖ρθ,n+1‖2

:= C‖ρθ,n+1‖2 +Rn,(73)
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where the reminder Rn is defined by:

Rn :=
1

τ
‖ρθ,n‖2 + (CB(θ)τ)2 + (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2

For Rn it holds:

Rn ≤ C(θ, u)(h2 + τ)2.

Note that we can derive a similar estimate for ρui,n+1, which we then add to (73).
To conclude, we denote

en := ‖ρθ,n‖2 +
N∑
i=1

‖ρui,n‖2,

to obtain the short structure
1

τ
en+1 ≤ 1

τ
en + C(en+1 +Rn).

From here it follows that:

(1− Cτ)en+1 ≤ en + CτRn.

For sufficiently small τ , we can instead write the expression

en+1 ≤ (1 + Cτ)en + CτRn.

Iterating the later inequality, we obtain

en+1 ≤ (1 + Cτ)n+1e0 + Cτ
n∑
j=1

Rj.

Finally, this argument yields

en+1 ≤ C‖θh,0 − θ0‖+ C‖uh,0i − u0
i ‖+ C(θ, u)(h2 + τ),

which proves the Theorem 5.2. �
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kolloider Lösungen”. In: Z. Phys. Chem 92 (1917), pp. 129–168.

[25] P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial
Differential Equations. Springer, 2003.

[26] S. C. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods.
Vol. 15. Springer, 1994.

[27] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Elsevier, 1978.
[28] S. G. Michlin. Konstanten in einigen Ungleichungen der Analysis. Vol. 35. Teubner-

Texte zur Mathematik, 1981.
[29] H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis.

De Gruyter Studies in Mathematics. de Gruyter, 1990.
[30] A. Muntean and M. Neuss-Radu. “A multiscale Galerkin approach for a class of non-

linear coupled reaction–diffusion systems in complex media”. In: Journal of Mathe-
matical Analysis and Applications 371.2 (2010), pp. 705–718.
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