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Abstract. An exact solution is found for the thermoelastic responses in an elliptical disc
due to interior heat generation within the solid, under thermal boundary conditions that
are subjected to arbitrary initial temperature on the upper and lower face at zero tem-
perature, with radiation boundary conditions on both surfaces. The method of integral
transformation technique is used to generate an exact solution of heat conduction equa-
tion in which sources are generated according to the linear function of the temperature.
The determination of displacement and stresses was performed by means of Airy’s stress
function approach. The numerical results obtained using these computational tools are
accurate enough for practical purposes.
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1 Introduction

The theoretical study of the heat flow within a hollow elliptical structures are of consid-
erable practical importance in a wide range of sectors such as mechanical, aerospace and
food engineering fields for the past few decades. Unfortunately, there are only few studies
concerned with steady and transient state heat conduction problems in elliptical objects.
McLachlan [11],[12] obtained mathematical solution of the heat conduction problem for
elliptical cylinder in the form of an infinite Mathieu function series considering special
case with neglecting surface resistance. Gupta [5] introduced a finite transform involving
Mathieu functions and used for obtaining the solutions of boundary value problem involv-
ing elliptic cylinders. Choubey [1] also introduced a finite Mathieu transform whose kernel
is given by Mathieu function to solve heat conduction in a hollow elliptic cylinder with
radiation. Kirkpatic et al. [8] extended the McLachlan’s solution with the involvement of
numerical calculation. Erdogdu et al. [2],[3] investigated the heat conduction within an
elliptical cylinder by means of a finite difference method. Sugano et al. [13] dealt with
transient thermal stress in a confocal hollow elliptical structures with both face surfaces
insulated perfectly and obtained the analytical solution with couple-stresses. Sato [14]
subsequently obtained heat conduction problem of an infinite elliptical cylinder during
heating and cooling considering the effect of the surface resistance. Recently El Dhaba [4]
used boundary integral method to solve the problem of plane, uncoupled linear thermoe-
lasticity with heat sources for an infinite cylinder with elliptical cross section, subjected
to a uniform pressure and to a thermal radiation condition on its boundary. However,
there aren’t many investigations done or studied to successfully eliminate thermoelastic
problems.

Researchers haven’t considered any thermoelastic problem expressed in elliptical co-
ordinates with boundary conditions of radiation type, in which sources are generated
according to the linear function of the temperatures, which satisfies the time-dependent
heat conduction equation. It has been proved that ample cases of heat production in
solids have led to various technical problems in mechanical applications in which heat
produced is rapidly sought to be transferred or dissipated. For instance, gas turbines
blades, walls of I.C. engine, outer surface of a space vehicle and other factors all depend
for their durability on rapid heat transfer from their surfaces. Reviewing the previous
studies, it was observed by the author that no analytical procedure has been established,
considering internal heat sources generation within the body. Actually, by considering a
circle as a special kind of ellipse, it is shown that the temperature distribution and his-
tory in a circular solution can be derived as a special case from the present mathematical
solution for the elliptical disc.

The object of this paper is to study the problem of heat transfer in the region where
heat is generated in the system and is transferred which may be taken as the zero on
the temperature scale. The success of this research mainly lies with the mathematical
procedures which present much simpler approach for optimization for the design in terms
of material usage and performance in engineering problem, particularly in the determi-
nation of thermoelastic behavior in elliptical disc engaged as the foundation of pressure
vessels, furnaces, etc. In this paper we have extended the integral transformation defined
Choubey [1] involving ordinary and modified Mathieu functions of first and second kind
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Figure 1: Shows the geometry of the problem

of order n which is analogous to the finite Hankel transform. Integral transformation and
it Inversion formula is established and some properties are mentioned at the Appendix
section. We do not claim to have obtained new integral transformation but certainly
we have modified integral transform suiting to our boundary conditions and applied the
transformation to determine the temperature distribution in a nonhomogeneous finite el-
liptical disc occupying the space D = {(ξ, η, z) ∈ R3 :ξi ≤ ξ ≤ ξo, 0 ≤ η ≤ 2π, z = ℓ}. For
illustrating the practical usage of the research, a particular case with realistic example is
explained for further clarification.

2 Formulation of the problem

The thermoelastic problem of an elliptical disc subjected to radiation type boundary
conditions on the outside and inside surfaces can be rigorously analyzed by introducing the
elliptical coordinates (ξ, η, z), which are related to the rectangular coordinates (x, y, z)
by the relation

x = c cosh ξ cos η, y = c sinh ξ sin η, z = ℓ, (1)

where c is the semi-focal length as shown in Fig. 1. From the above equations, one obtains
a group of confocal ellipses and hyperbolas with the common foci for various values of ξ
and η, respectively.

2.1 Transient Heat Conduction Analysis

The governing equation of heat conduction with internal heat source, the initial condition
and boundary conditions in elliptical cylindrical coordinates are given, respectively as

κh2 (∂,ξξ +∂,ηη ) θ (ξ, η, t) + Θ (ξ, η, t, θ) = θ(ξ, η, t),t , (2)

θ(ξ, η, t)|t=0 = 0, for t = 0, at ξi ≤ ξ ≤ ξo, 0 < η < 2π, (3)

θ(ξ, η, t) + k1 θ(ξ, η, t),ξ = 0, for ξ = ξi, at 0 < η < 2π, (4)

θ(ξ, η, t) + k2 θ(ξ, η, t),ξ = 0, for ξ = ξo, at 0 < η < 2π, (5)
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where θ (ξ, η, t) is the temperature function, Θ (ξ, η, t, θ) is the source function for the
problem, ki (i = 1, 2) are radiation coefficients, κ = λ/ρC represents thermal diffusivity
in which λ being the thermal conductivity of the material, ρ is the density and C is the
calorific capacity, assumed to be constant.
We assume source functions as the superposition of the simpler function [9]

Θ (ξ, η, t, θ) = Φ ( ξ, η, t) + ψ (t) θ (ξ, η, t), (6)

and
T (ξ, η, t) = θ (ξ, η, t) exp [−

∫ t

0
ψ (ζ) d ζ] ,

χ (ξ, η, t) = Φ (ξ, η, t) exp [−
∫ t

0
ψ (ζ) d ζ] .

}
(7)

Substituting equations (6) and (7) in the heat conduction equation (2), we obtain

κh2(∂,ξξ +∂,ηη )T (ξ, η, t) + χ (ξ, η, t) = T (ξ, η, t),t . (8)

For the sake of brevity, we consider

χ(ξ, η, t) = exp(−ωt)δ(ξ − ξ0)δ(η − η0)/ξ0 η0, ξi ≤ ξ0 ≤ ξo, 0 ≤ η0 ≤ 2π, ω > 0. (9)

The equations (2) to (9) constitute the mathematical formulation for temperature change
within elliptical disc with internal heat source under consideration.

2.2 Displacement and Thermal Stress Analysis

Following Gosh [6] and Jeffery [7], the displacements are given by

(2µ)u/h = −ϕ (ξ, η, t),ξ +P (ξ, η, t),η /h
2,

(2µ) v/h = −ϕ (ξ, η, t),η +P (ξ, η, t),ξ /h
2,

}
(10)

where (u, v) are displacements in the directions normal to the curves (ξ, η) constant, P
satisfies the equations

∇2P = 0,
(λ+ µ) [(h−2P,η),ξ + (h−2P,ξ),η] = (λ+ 2µ)[(∂,ξξ +∂,ηη )ϕ],

}
(11)

and stress function in equation (10) satisfies below equation (12) of the fourth order

h2∇2h2∇2ϕ = − h2∇2θ. (12)

The components of the stresses [13] are represented as

σξξ = h2ϕ,ηη + (e2h4/2) sinh 2ξ ϕ,ξ − (e2h4/2 ) sin 2η ϕ,η ,
σηη = h2ϕ,ξξ − (e2h4/2) sinh 2ξ ϕ,ξ + (e2h4/2 ) sin 2η ϕ,η ,
σξη = −h2ϕ,ξη + (e2h4/2) sin 2η ϕ,ξ + (e2h4/2 ) sinh 2ξ ϕ,η .

 (13)

For traction free surface the stress functions

σξξ = σξη = 0 at ξ = ξi, ξo. (14)

The set of equations (12) to (14) constitute mathematical formulation for displacement
and thermal stresses developed within solid due to temperature change.
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3 Solution for the Problem

3.1 Transient Heat Conduction Analysis

In order to solve fundamental differential equation (8), we firstly introduce the extended
integral transformation of order n and m over the variable ξ and η as

f̄(qn,m) =

∫ ξo

ξi

∫ 2π

0

f(ξ, η)(cosh 2ξ − cos 2η)Sn,m(k1, k2, ξ, η, qn,m)dξdη, (15)

Inversion theorem of (15) as

f(ξ, η) =
∞∑
n=0

∞∑
m=1

f̄(qn,m)Sn,m(k1, k2, ξ, η, qn,m)/Cn,m, (16)

where, the kernel Sn,m(k1, k2, ξ, η, qn,m)is given in equation (37) and

Cn,m =

∫ ξo

ξi

∫ 2π

0

(cosh 2ξ − cos 2η) S2
n,m(k1, k2, ξ, η, qn,m) dξ dη. (17)

Performing above integral transformation under the conditions (4) and (5), we obtain

T ,t (n,m, t) + αn,mT (n,m, t) = exp(−ωt), (18)

where T̄ (n,m, t) is the transformed function of T (ξ, η, t) and αn,m = 2κ qn,m h
2. On

solving (18) under initial boundary condition given in equation (3), one obtain

T (n,m, t) = ℘n,m exp(−αn,m t), (19)

where

℘n,m = 1 + [exp (αn,m − ω) t/(αn,m − ω)].

On applying inversion theorems defined in (16), one obtain the expression for temperature
as

T (ξ, η, t) =
∞∑
n=0

∞∑
m=1

℘n,m Sn,m(k1, k2, ξ, η, qn,m) exp(−αn,m t)/Cn,m. (20)

Taking into account the first equation of equation (7), the temperature distribution as

θ(ξ, η, t) =
∑∞

n=0

∑∞
m=1 ℘n,m Sn,m(k1, k2, ξ, η, qn,m)

× exp(−αn,m t)/Cn,m.
(21)

The function given in equation (21) represents the temperature at every instant and at all
points of elliptical annulus of finite height under the influence of radiation’s conditions.
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3.2 Thermoelastic Solution

Assuming Airy’s stress function ϕ(ξ, η, t) which satisfies condition (12) as,

ϕ(ξ, η, t) =
∑∞

n=0

∑∞
m=1

(
ξ+Xn,m ξ2+Yn,m η2

Cn,m (ω−αn,m)

)
Sn,m(k1, k2, ξ, η, qn,m)

×℘n,m exp(−αn,m t) exp[
∫ t

0
ψ (ζ) d ζ].

(22)

Arbitrary functionsXn,m and Yn,m are determined using equation (22) and (13) in equation
(14). Thus equation (22) becomes

ϕ =
∑∞

n=0

∑∞
m=1


(−ω + αn,m) exp[t (−ω + αn,m)]
×C1 Sn,m(ξ, η) + C2 Sn,m(ξ0, η)

2Cn,m(−ω + αn,m)
2ξ0[2A1 + C3Sn,m[ξ0, η] + C4]

+4 η C5 Sn,m[ξ0, η]


× exp(−αn,m t) exp [

∫ t

0
ψ(ξ) dξ].

(23)

Now using equation (23) in equation (13), one obtains the stresses expressions as

σξξ =
∑∞

n=0

∑∞
m=1


(ω − αn,m) exp[t (−ω + αn,m)]

[D1 + Sn,m[ξ0, η](D)]− 2Sn,m[ξ, η](D)

4Cn,m(−ω + αn,m)
2ξ0[2A1 + C3 Sn,m[ξ0, η] + C4]

+4 η C5 Sn,m[ξ0, η]


× exp(−αn,m t) exp [

∫ t

0
ψ(ξ) dξ].

(24)

where

A1 = e2h2[4 sin 2η + e2h2η (cos 4η − cosh 4ξ0)]S
2
n.m[ξ0, η],

C1 = e2h2ξ (e2h2η (cos 4η − cosh 4ξ0) + 4 sin 2η)(ξ − 2ξ0)S
2
n,m[ξ0, η]

+4 [ (e2h2η(ξ − ξ0)
2 sin 2η + 4ξ(−2ξ + ξ0(4e

2h2(ξ − ξ0) sinh 2ξ0))
×∂ηS2

n.m[ξ0, η] + 2 ξ ξ0(ξ − ξ0) ∂ξSn,m[ξ0, η](2∂ηηSn,m[ξ0, η]
+e2h2 sinh 2ξ0∂ξSn,m[ξ0, η]) + (ξ − ξ0) ∂ηSn,m[ξ0, η](2η(−ξ + ξ0)
×∂ηηSn,m[ξ0, η] + e2h2(2ξξ0 sin 2η + η sinh 2ξ0(−ξ + ξ0))∂ξSn,m[ξ0, η]
−8ξξ0∂ξηSn,m[ξ0, η]],
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C2 = [−16ξ2 − e4h4η2ξ2 cosh 4ξ0 + 24e2h2ηξ sin 2η(ξ − 2ξ0)
+e4h4η2(ξ − ξ0)

2 cos 4η + 32ξξ0 + 2e4h4η2ξξ0 cosh 4ξ0
+8e2h2η2ξ2ξ0 sinh 2ξ0 − e4h4η2ξ20 cosh 4ξ0
−8e2h2ξξ20 sinh 2ξ0] ∂ηSn,m[ξ0, η]
+2 [2e2h2η(ξ − ξ0)(η(ξ − ξ0) sin 2η − 2ξξ0 sinh 2ξ0)∂ηηSn,m[ξ0, η]
+e2h2ξ(4ξη sinh 2ξ0 + ξ0(−8η sinh 2ξ0 + e2h2η(ξ − ξ0) cos 4η
+4(ξ − ξ0) sin 2η + e2h2η(−ξ + ξ0) cosh 4ξ0)∂ξSn,m[ξ0, η]
+2(ξ − ξ0)(e

2h2η2ξ sinh 2ξ0 + ξ0(−4ξ + e2h2ηξ sin 2η − e2h2η2 sinh 2ξ0))
× ∂ξηSn,m[ξ0, η]],

C3 = [−16 + e4h4η2 cos 4η − e4h4η2 cos 4ξ0 + 24e2h2η sin 2η + 4e2h2ξ0 sinh 2ξ0)]
× ∂ηSn,m[ξ0, η] + 4e2h2η (η sin 2η − ξ0 sinh 2ξ0) ∂ηηSn,m[ξ0, η]
+8e2h2η sinh 2ξ0∂ξSn,m[ξ0, η]
+e2h2[e2h2η (cos 4η − cosh 4ξ0) + 4 sin 2η] ξ0 ∂ξSn,m[ξ0, η],

C4 = 4e2h2η2 sinh 2ξ0∂ξηSn,m[ξ0, η] + 4 (−2 + e2h2η sin 2η)ξ0∂ξηSn,m[ξ0, η],

C5 = −8 + e2h2(η sin 2η + 2ξ0 sinh 2ξ0)∂ηS
2
n.m[ξ0, η]

+ξ0∂ξSn,m[ξ0, η] (2∂ηηSn,m[ξ0, η] + e2h2 sinh 2ξ0∂ξSn,m[ξ0, η])
− ∂ηSn,m[ξ0, η] [2η∂ηηSn,m[ξ0, η] + e2h2(η sinh 2ξ0
−ξ0 sin 2η] ∂ξSn,m[ξ0, η] + 4ξ0∂ξηSn,m[ξ0, η],

D = −2D2 +D3 + 4ηD4, D = D5 +D6 + 4D7,

D1 = 2e2h2ξ[e2h2η(cos 4η − cosh 4ξ0) + 4 sin 2η]
× (ξ − 2ξ0)S

2
n.m[ξ0, η](−2∂ηηSn,m[ξ0, η]

+e2h2(sin 2η − sinh 2ξ)∂ξSn,m[ξ0, η]),

D2 = ∂ηηSn,m[ξ, η] + e2h2 cosh ξ sinhhξ∂ξSn,m[ξ, η]
× (2(e2h2ξ[e2h2η(cos 4η − cosh 4ξ0)
+4 sin 2η](ξ − 2ξ0)S

2
n.m[ξ0, η](−2∂ηηSn,m[ξ0, η]

+e2h2(sin 2η − sinh 2ξ)∂ξSn,m[ξ0, η])
+(−16ξ2 − e4h4η2ξ2 cosh 4ξ0 + 24e2h2ηξ sin 2η(ξ − 2ξ0)
+e4h4η2 cos 4η(ξ − ξ0)

2 + 32ξξ0
+2e4h4η2ξξ0 cosh 4ξ0 + 8e2h2ξ0ξ

2 sinh 2ξ0 − e4h4η2ξ20 cosh 4ξ0
−8e2h2ξξ20 sinh 2ξ0)∂ηSn,m[ξ0, η]
+e2h2η(ξ − ξ0)(η sin 2η(ξ − ξ0)− 2ξ sinh 2ξ0)∂ηηSn,m[ξ0, η])
+e2h2ξ(4ηξ sinh 2ξ0 + ξ0(−8η sinh 2ξ0 + e2h2η cos 4η(ξ − ξ0)
+4(ξ − ξ0) sin 2η + e2h2η(−ξ + ξ0) cosh 4ξ0))∂ξSn,m[ξ0, η]
+2(ξ − ξ0)(e

2h2ηξ sinh 2ξ0
+(−4ξ + 2e2h2η sin 2η − e2h2η2 sinh 2ξ0)ξ0)∂ξηSn,m[ξ0, η])),
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D3 = e2h2∂ηSn,m[ξ, η](∂ηSn,m[ξ0, η](ξ
2 sin 2η(−16 + e4h4η2 cos 4η

−e4h4η2 cosh 4ξ0 + 24e2h2η sin 2η)
+2ξ sin 2η (16− e4h4η2 cos 4η + e4h4η2 cosh 4ξ0 − 24e2h2η sin 2η
+4e2h2ξ sinh 2ξ0) ξ0 + e2h2(η(cos 4η − cosh 4ξ0)(−8 + e2h2η sin 2η)
−8ξ sin 2η sinh 2ξ0)ξ

2
0) + 2(2η sin 2η(e2h2η sin 2η(ξ − ξ0)

2

+2ξ0(−4ξ0 + e2h2ξ(−ξ + ξ0) sinh 2ξ0))∂ηηSn,m[ξ0, η]
+e2h2ξ sin 2η(4ηξ sinh 2ξ0
+ξ0(8η sinh 2ξ0 + e2h2η(ξ − ξ0) cos 4η + 4(ξ − ξ0) sin 2η
+e2h2η(−ξ + ξ0) cosh 4ξ0))∂ξSn,m[ξ0, η]
+2(e2h2ξξ0(−ξ + ξ0) cos 4η + ηξ0(e

2h2ξ(ξ − ξ0)− 8ξ0 sinh 2ξ0)
+(−ξ + ξ0) sin 2η(4ξξ0 + e2h2η2(−ξ + ξ0) sinh 2ξ0))∂ξηSn,m[ξ0, η])),

D4 = e2h2η sin 2η(ξ − ξ0)
2 + 4ξ(−2ξ + (4 + e2h2ξ0(ξ − ξ0) sinh 2ξ0))∂

×ηS
2
n,m

[ξ0, η] + 2ξξ0(ξ − ξ0)∂ξSn,m[ξ0, η](2∂ηηSn,m[ξ0, η] + e2h2 sinh 2ξ0
×∂ξSn,m[ξ0, η] + (ξ − ξ0)∂ηSn,m[ξ0, η](2η((−ξ + ξ0)∂ηηSn,m[ξ0, η]
+e2h2(2ξξ0 sin 2η + η sinh 2ξ0(−ξ + ξ0))∂ξSn,m[ξ0, η]
−8ξξ0∂ξηSn,m[ξ0, η]− 2∂ηηSn,m[ξ0, η] + e2h2 cosh ξ sinh ξ∂ξSn,m[ξ0, η]
+∂ηSn,m[ξ, η](e

2h2(ξ − ξ0) sin 2η(−8ξ + e2h2η sin 2η(ξ − ξ0)
+4ξ0(2 + e2h2ξ sinh 2ξ0)∂ηS

2
n,m

[ξ0, η]

+2e2h2 sin 2η(ξ − ξ0)ξ0∂ξSn,m[ξ0, η](2∂ηηSn,m[ξ0, η] + e2h2ξ0 sinh 2ξ0)
×∂ηS2

n,m
[ξ0, η]− ∂ηSn,m[ξ0, η]( 2(e

2h2 sin 2η(ξ − ξ0)
2 − 8ξ2

0
)∂ηηSn,m[ξ0, η]

+e2h2(e2h2η sin 2η sinh 2ξ0(ξ − ξ0)
2 + ξξ0e

2h2 cos 4η(ξ − ξ0)
+ξ0(−8ξ0 sinh 2ξ0 + e2h2ξ(−ξ + ξ0))∂ξSn,m[ξ0, η]
+8ξξ0(ξ − ξ0) sin 2η∂ξηSn,m[ξ0, η])),

D5 = 2e4h4(e2h2η(cos 4η − cosh 4ξ0) + 4 sin 2η) sinh 2ξ(ξ − ξ0)S
2
n,m[ξ0, η],

D6 = e2h2Sn,m[ξ0, η](∂ηSn,m[ξ0, η](ξ(−16 + e4h4η2 cos 4η
−e4h4η2 cosh 4ξ0 + 24e2h2η sin 2η) sinh 2ξ
+sinh 2ξ(16− e4h4η2 cos 4η + e4h4η2 cosh 4ξ0 − 24e2h2η sin 2η
+8ξe2h2 sinh 2ξ0))ξ0
−e2h2((cos 4η − cosh 4ξ0)(−2 + e2h2η sin 2η) + 4ξ20 sinh 2ξ sinh 2ξ0))
+4(e2h2η2ξ sin 2η sinh 2ξ + ξ0(−e2h2η sinh 2ξ(η sin 2η + 2ξ sinh 2ξ0)
+(sin 2η(2− e2h2η sin 2η)
+e2h2η sinh 2ξ sinh 2ξ0)ξ0))∂ηηSn,m[ξ0, η]
+e2h2 sinh 2ξ(8ηξ sinh 2ξ0 + ξ0(−8η sinh 2ξ0 + e2h2η cos 4η(2ξ − ξ0)
+e2h2η cosh 4ξ0(−2ξ + ξ0)− 4 sin 2η(−2ξ + ξ0))∂ξSn,m[ξ0, η]
+(e2h2η2ξ sinh 2ξ sinh 2ξ0 + sinh 2ξ(−4ξ + 2e2h2ηξ sin 2η
−e2h2η2 sinh 2ξ0)ξ0 − (−2 + e2h2η sin 2η)(sinh 2ξ + sinh 2ξ0)ξ

2
0)

×∂ξηSn,m[ξ0, η]),
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D7 = e2h2∂ηS
2
n,m

[ξ0, η](ηξ(−8 + e2h2η sin 2η) sinh 2ξ0
+ξ0η sinh 2ξ(8− e2h2η sin 2η + 4e2h2ξ sinh 2ξ0
−(sin 2η(−2 + e2h2η sin 2ξ sinh 2ξ0)ξ0))
+e2h2η sin 2ξ(2ξ − ξ0)ξ0∂ξSn,m[ξ0, η](2∂ηηSn,m[ξ0, η]
+e2h2 sinh 2ξ0∂ξSn,m[ξ0, η]
+∂ηSn,m[ξ0, η](e

2h2((e2h2ηξ0 sin 2η(sinh 2ξ(2ξ − ξ0)
+ sinh 2ξ0(−2ξ20 + e2h2η sinh 2ξ(−ξ + ξ0))∂ξSn,m[ξ0, η]
+4ηξ0 sinh 2ξ((−2ξ + ξ0)∂ξηSn,m[ξ0, η]− 4(e2h2η2ξ cosh ξ sinh ξ
+ξ0(e

2h2η2 cosh ξ sinh ξ + ξ0 − e2h2ηξ0 cos η sinh η))∂ηηSn,m[ξ0, η]).

The other resulting equations of stresses (i.e. σηη and σξη) which are also rather lengthy,
and consequently are omitted here for the sake of brevity, but considered during graphical
discussion described in below section.

4 Numerical Results, Discussion and Remarks

For the sake of simplicity of calculation, we introduce the following dimensionless values

b̄o = bo/ao, bi = bi/ai, e = c/ao, h̄
2 = h2a2o, τ = κ t/a2o,

θ(ξ, η, t) = θ(ξ, η, t)/θk, (θi, θo) = (θi, θo)/θk (k = i, o),
ϕ̄(ξ, η, t) = ϕ(ξ, η, t)/Eαtθka

2
o, σ̄ij = σij/Eαtθk (i, j = ξ, η).

 (25)

Here E stands for Young’s modulus, αt for Thermal expansion coefficient, respectively.
Then, setting

ψ(ζ) = − ζ, T0 = 0, (26)

⇒
∫ t

0

ψ(ζ) dζ = − t2/2, T̄ ∗
0 = 0. (27)

Substituting the value of equation (27) in equations (21), (23) and (24), we obtained
the expressions for the temperature, displacement and stresses respectively for our nu-
merical discussion. The numerical computations have been carried out for Aluminum
metal with parameter a = 2.65 cm, b = 3.22 cm, h = 2.00 cm, Modulus of Elasticity
E = 6.9 × 106 N/cm2, Shear modulus G = 2.7 × 106 N/cm2, Poisson ratio υ = 0.281,
Thermal expansion coefficient, αt= 25.5× 106 cm/cm-0C, Thermal diffusivity κ = 0.86
cm2/sec, Thermal conductivity λ = 0.48 cal sec−1/cm 0C with qn,m =0.0986, 0.3947,
0.8882, 1.5791, 2.4674, 3.5530, 4.8361, 6.3165, 7.9943, 9.8696, 11.9422, 14.2122, 16.6796,
19.3444, 22.2066, 25.2661, 28.5231, 31.9775, 35.6292, 39.4784 are the positive & real roots
of the transcendental equation (35). The foregoing analysis are performed by setting the
radiation coefficients constants, ki = 0.86 (i = 1, 2) so as to obtain considerable mathe-
matical simplicities. In order to examine the influence of uniform heating on the disc, we
performed the numerical calculation for time τ = 0.001, 0.05, 0.12, 0.30, 0.70..∞ and
numerical calculations are depicted in the following figures with the help of MATHEMAT-
ICA software. The theoretical analysis on the heat conduction & its thermal stress in a
confocal hollow elliptical plate without internal heat source subjected to non-axisymmetric
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heating on internal and outer elliptical boundaries was investigated by integral transform
by Sugano et al. [13], where kernel was expressed in the form of Mathieu and mod-
ified Mathieu functions. The thermoelastic effects on the temperature, displacements,
and thermal stresses without internal heat source was fully discussed in research paper
[13]. For the sake of brevity, discussion of these effects was omitted here and graphical
illustration for the thermoelastic response for an elliptical disc considering interior heat
generation was investigated during our research. Figs. 2-6 illustrates the numerical results
of dimensionless temperature and stresses of elliptical disc due to interior heat generation
within the solid, under thermal boundary condition that are subjected to arbitrary initial
temperature on the upper and lower face at zero temperature and boundary conditions of
radiation type on the outside and inside surfaces, with independent radiation constants
in radial direction at η= 900 for different values of time. As shown in Fig. 2, the tem-
perature drops as the time proceeds along radial direction and is greatest in a steady and
initial state. From Fig. 2, it can be seen that the temperature change on the heated
surface decreases when the radius of plate increases. The variation of normal stresses σ̄ξξ,
σ̄ηη, and σ̄ξη is shown in Figs. 3, 4 and 5, respectively.

Figure 2: θ(ξ, η, t) versus ξ at η= 90 deg. for different values of time

From Fig. 3, the large compressive stress occurs on the inner heated surface and the
tensile stress occurs on the inner surface which drops along the radial direction. It is also

Figure 3: σ̄ξξ versus ξ at η= 90 deg. for different values of time
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Figure 4: σ̄ηη versus ξ at η= 90 deg. for different values of time

Figure 5: σ̄ξη versus ξ at η= 90 deg. for different values of time

Figure 6: θ(ξ, η, t) versus η at ξ= 0.45 for different values of time
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Figure 7: σ̄ξξ versus η at ξ= 0.45 for different values of time

Figure 8: σ̄ηη versus η at ξ= 0.45 for different values of time

Figure 9: σ̄ξη versus η at ξ= 0.45 for different values of time
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noted that Fig. 3 agrees with the traction free surface conditions as quoted in equation
(14). From Fig. 4, the compressive stress occurs on the outer edge of the ellipse and the
absolute value rises as the time proceeds towards outer surface. From Fig. 5, the maxi-
mum tensile stress occurs during uniform heating inside the core of the disc which follows
assumed traction free property as in equation (14). Figs. 6 to 9 shows dimensionless
temperature and thermal stresses along angular direction.

Fig. 6 shows the time variation of temperature distribution along angular direction of
the disc. The temperature decreases with time, and the maximum value of temperature
magnitude occurs at higher steady state with available internal heat energy. The afore-
mentioned results agrees with the results [13] as soon as internal heat is not considered
while doing thermoelastic analysis. The distribution of the dimensionless temperature
gradient at each time decreases in the unheated area of the outer ellipse boundary tend-
ing below zero in one direction. The stress distributions are shown from Figs. 7 to 9.
It is observed that the stress patterns from elliptical inner hole to mid core part which
follows the similar pattern of the applied mechanical boundary conditions. The radial
stress σ̄ξξ, circumferential stress σ̄ηη and shear stress σ̄ξη at inner surface are nearly zero
due to the assumed traction free boundary conditions. It is noted that maximum tensile
stress occurs near the outer surface and the compressive stress occurs inside the disc and
its absolute value increases with time.

5 Transition to annular-circular disc

When the elliptical disc degenerates into an annular circular disc with the thicknessh→ 0,
internal radiusξi, and external radius ξo → ∞, occupying the space D′ = {(x, y, z) ∈ R3 :
a ≤ (x2 + y2)1/2 ≤ b, z = ℓ}, where r = (x2 + y2)1/2 in such a way that h exp(ξ)/2 → r,
h exp(ξi)/2 → a, and h exp(ξ0)/2 → b ([11] pp. 367-368) and taking θ independent of η.
For that we take,

n = 0, q → 0, e→ 0, cosh 2ξ dξ → 2rh2dr, A
(0)
2 → 0, A

(0)
0 → 1/

√
2,

λ20,m → α2
m, ce0(η, q0,m) → 1/

√
2, ce0(ξ, q0,m) → J0(αmr),

Fey0(ξ0, q0,m) → Y0(αmr), αm(= α0,m)are the roots of
J0(k1, αa)Y0(k2, αb)− J0(k2, αb)Y0(k2, αa) = 0,
Ce0(k1, ξ, η, q0,m) → Ce0(k1, rαm),
Fey0(k1, ξ, η, q0,m) → Fey0(k1, rαm),
S0,m(k1, k2, ξ, η, q0,m) → S0,m(k1, k2, rαm) (= Sm(k1, k2, rαm)),

where

J0(kj, αi r) = J0(αir) + kjJ
′
0(αir),

Y0(kj, αi r) = Y0(αir) + kj Y
′
0(αir),

}
i = 1, 2.

Equation (21) degenerates into temperature distribution in hollow circular disc

θ (r, z, t) =
∑∞

m=1
1
Cm

(
1 + exp (αm−ω) t

αm−ω

)
Sm(k1, k2, rαm)

× exp(−αm t) exp[
∫ t

0
ψ (ζ) d ζ],

(28)
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where

Cm =

∫ b

a

r S2
m(k1, k2, rαm) dr,

and kernel as

Sm(k1, k2, rαm) = J0(rαm) [Y0(k1, aαm) + Y0(k2, bαm) ]
−Y0(rαm) [ J0(k1, aαm) + J0(k2, bαm) ].

The aforementioned results agrees with the results [10].

6 Conclusion

The proposed analytical solution of transient plane thermal stress problem of the confocal
elliptical region was handled in elliptical coordinate system with the presence of a source of
internal heat. To author’s knowledge there have been no reports of solution so far in which
sources are generated according to the linear function of the temperature in mediums in
the form of elliptical disc of finite height with boundaries conditions of the radiation
type. The analysis of non-stationary two-dimensional equation of heat conduction is
investigated with the integral transformation method as when there are conditions of
radiation type contour acting on the object under consideration. With proposed integral
transformation method, it is possible to apply widely to analysis stationary as well as non-
stationary temperatures. Also by using the Airy’s stress function induced by Sugano [13],
we have proposed an exact solution theoretically and illustrated graphically for better
understanding. The following results were obtained to carry away during our research
are:

1. The advantage of this method is its generality and its mathematical power to handle
different types of mechanical and thermal boundary conditions.

2. The maximum tensile stress is shifting from central core to outer region may be due
to heat, stress, concentration or available internal heat sources under considered
temperature field.

3. Finally, the maximum tensile stress occurs in the circular hole on the major axis
compared to elliptical hole indicates that the distribution of weak heating. It may
be due to insufficient penetration of heat through elliptical inner surface. The
aforementioned integral transform will also be extended to other elliptical objects
having finite height with conditions of radiation type contour during further research
work.

7 Nomenclature

ξ, η = Elliptical Coordinates.
q = Parameter of Mathieu equation.
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cen(η, q) = Ordinary Mathieu function of first kind of order n.
Cen(ξ, q) = Modified Mathieu function of second kind of order n.
h = Interfocal distance.
1/h2 = c2(cosh ξ − cos 2η)/2.
k = Thermal conductivity.
H = Surface conductance.
Cen(kj, ξi, q) = Mathieu function defined in equation (33).
Feyn(kj, ξo, q) = Mathieu function defined in equation (33).
Sn,m(k1, k2, ξ, η, qn,m) = Mathieu function defined in equation (37).
qn,m = Parametric roots of equation (35).
f̄(qn,m) = Mathieu transform off(ξ, η).
θ (ξ, η, t) = The temperature distribution at any time t.
Θ (ξ, η, t, θ) = The internal source function
ϕ = The Airy’s stress functions.
T0 = The reference temperature.
f(η, t) = The heat supply available on curved surface.
2c = Focal length, = 2

√
a2i − b2i = 2

√
a2o − b2o ,[13].

ξi, ξo = tanh−1(bi/ai), = tanh−1(bo/ao) ,[13].

Cn,m =
∫ ξo
ξi

∫ 2π

0
(cosh 2ξ − cos 2η) S2

n,m(k1, k2, ξ, η, qn,m) dξ dη.
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8 Appendix

8.1 The extended finite Mathieu transformation

Let us seek the solution of the Mathieu differential equation

∂,ξξ y(ξ, η) + ∂,ηη y(ξ, η) + 2q [cosh(2ξ)− cos(2η)] y(ξ, η) = 0, (29)

for the modified boundary conditions of the radiation type as compared with

y(ξ, η) + k1 ∂,ξ y(ξ, η) |ξ=ξi
= 0,

y(ξ, η) + k2 ∂,ξ y(ξ, η) |ξ=ξo
= 0,

}
as ξi < ξo. (30)

If the general solution of the equation (29) is

y(ξ, η) = [C1Cen(ξ, q) + C2 Feyn(ξ, q)] cen(η, q), (31)

where the comma denotes the differentiation with the following variable, C1 and C2 are
arbitrary constants, cen(ξ, q) ([11], p.21) is a Mathieu function of the first kind of order
n, Cen(ξ, q) ([11], p.159) is a modified Mathieu function of the first kind of order n,
Feyn(ξ, q) ([11], p.159) is a Y -type modified Mathieu function of the second order n.
To obtain a solution of equation (29) that satisfies conditions (30)), we will substitute
equation (31) into (30), one obtains

C1[Cen(ξi, q) + k1C
′en(ξi, q)] = −C2[Feyn(ξi, q) + k1 F

′eyn(ξi, q)],
C1[Cen(ξo, q) + k1C

′en(ξo, q)] = −C2[Feyn(ξo, q) + k1 F
′eyn(ξo, q)] ,

(32)
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Taking

Cen(kj, ξi, q) = Cen(ξi, q) + kj C
′en(ξi, q),

Feyn(kj, ξo, q) = Feyn(ξo, q) + kj F
′eyn(ξo, q).

}
(33)

We get equation (32) as

C1[Cen(k1, ξi, η, q)] = −C2[Feyn(ki, ξi, η, q)],
C1[Cen(k2, ξo, η, q)] = −C2[Feyn(k2, ξo, η, q)] .

}
(34)

Eliminating C1&C2 from (34), we see that the frequency equation exist only if

Cen(k1, ξi, η, q)Feyn(k2, ξo, η, q)− Cen(k2, ξ0, η, q)Feyn(k1, ξi, η, q) = 0. (35)

Denote by qn,m the roots of equation (35). From the first equation of (34) and (31), and
on the other hand, by using the second equation of (34) and (31), we obtain

y(ξ, η) = C1cen(η,qn,m)

Feyn(k1,ξi,η,qn,m)
[Cen(ξ, qn,m)Feyn(k1, ξi, η, qn,m)

−Feyn(ξ, qn,m)Cen(k1, ξi, η, qn,m)],

y(ξ, η) = C2cen(η,qn,m)

Feyn(k2,ξ0,η,qn,m)
[Cen(ξ, qn,m)Feyn(k1, ξo, η, qn,m)−

Feyn(ξ, qn,m)Cen(k1, ξo, η, qn,m)] .

 (36)

The linear combination of the two preceding equations of (36) leads to the functions

Sn,m(k1, k2, ξ, η, qn,m) = Cen(ξ, qn,m) cen(η, qn,m)
×[Feyn(k1, ξi, qn,m) + Feyn(k2, ξo, qn,m) ]
+Feyn(ξ, qn,m) cen(η, qn,m)
×[Cen(k1, ξi, qn,m) + Cen(k2, ξo, qn,m)].

(37)

8.2 Essential properties

Differential property of Sn,m(k1, k2, ξ, η, qn,m)
Differentiate equation (37) with respect to ξ,

S ′
n,m(k1, k2, ξ, η, qn,m) = C ′

en(ξ, qn,m) cen(η, qn,m)
×[Feyn(k1, ξi, qn,m) + Feyn(k2, ξo, qn,m) ]

−F ′
eyn(ξ, qn,m) cen(η, qn,m)

×[Cen(k1, ξi, qn,m) + Cen(k2, ξo, η, qn,m)].

(38)

From equations (37) and (38), we obtain

S ′
n,m

Sn,m

=


C ′

en(ξ, qn,m) cen(η, qn,m)
×[Feyn(k1, ξi, qn,m) + Feyn(k2, ξo, qn,m)]
−F ′

eyn(ξ, qn,m) cen(η, qn,m)
×[Cen(k1, ξi, qn,m) + Cen(k2, ξo, η, qn,m)]


Cen(ξ, qn,m) cen(η, qn,m)
×[Feyn(k1, ξi, qn,m) + Feyn(k2, ξo, qn,m) ]
−Feyn(ξ, qn,m) cen(η, qn,m)
×[Cen(k1, ξi, qn,m) + Cen(k2, ξo, η, qn,m)]


. (39)
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Since

C ′
en(ξ, qn,m) = (1/k1) [Cen(k1, ξ, η, qn,m)− Cen(ξ, qn,m)],

F ′
eyn(ξ, qn,m) = (1/k2)[Feyn(k1, ξ, η, qn,m)− Fyen(ξ, qn,m)].

}
(40)

Substituting equation (40) in (39) leads to

S ′
n,m(k1, k2, ξi, η, qn,m)/Sn,m(k1, k2, ξi, η, qn,m) = −1/k1atξ = ξi, (41)

S ′
n,m(k1, k2, ξo, η, qn,m)/Sn,m(k1, k2, ξo, η, qn,m) = −1/k2atξ = ξo. (42)

Orthogonal property of eigenfunction Sn,m(k1, k2, ξ, η, qn,m)
If qn,m and qp,r be the roots of equation (35) then equation Sn,m(k1, k2, ξ, η, qn,m) and
Sp,r(k1, k2, ξ, η, qp,r) satisfy the differential equation (29) so that we have

∂ξξ Sn,m + ∂ηηSn,m + 2qn,m [cosh(2ξ)− cos(2η)]Sn,m = 0, (43)

∂ξξ Sp,r + ∂ηηSp,r + 2qp,r [cosh(2ξ)− cos(2η)]Sp,r = 0. (44)

Multiply (43) by Sp,r(k1, k2, ξ, η, qp,r) and (44) by Sn,m(k1, k2, ξ, η, qn,m) and subtracting
(43) from (44) we obtain

∂ξ[Sp,r ∂ξSn,m − Sn,m∂ξSp,r] + ∂η[Sp,r ∂ηSn,m − Sn,m ∂ηSp,r]
+2(qn,m − qp,r)[cosh(2ξ)− cos(2η)]sn,msp,r = 0.

(45)

Integrating equation (45) with respect to ξ and η∫ 2π

0
[Sp,r∂ξSn,m − Sn,m∂ξSp,r]

ξo
ξi
dη

+
∫ ξo
ξi
[Sp,r∂ξSn,m − Sn,m∂ξSp,r]

2π
0 dξ

+2(qn,m − qp,r)
∫ ξo
ξi

∫ 2π

0
[cosh(2ξ)− cos(2η)]sn,msp,rdξdη = 0.

(46)

Thus we can easily obtain∫ ξo

ξi

∫ 2π

0

[cosh(2ξ)− cos(2η)]sn,m sp,r dξ dη = 0, p ̸= n, r ̸= m. (47)

Properties of finite Mathieu transform∫ ξo
ξi

∫ 2π

0
[∂ξξy(ξ, η) + ∂ηηy(ξ, η)]Sn,m(k1, k2, ξ, η, qn,m) dξ dη

=
∫ 2π

0
Sn,m(k1, k2, ξ, η, qn,m)

[
∂ξy − y

S
′
n,m(k1,k2,ξ,η,qn,m)

Sn,m(k1,k2,ξ,η,qn,m)

]ξo
ξi

dη

+
∫ ξo
ξi

∫ 2π

0
y(ξ, η) [∂ξξ + ∂ηη]Sn,m(k1, k2, ξ, η, qn,m) dξ dη

+
∫ ξo
ξi

[Sn,m(k1, k2, ξ, η, qn,m) [∂ξy]− y [∂ηy]Sn,m(k1, k2, ξ, η, qn,m)]
2π
0 dξ,

(48)
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since Sn,m is the solution of ∂ξξSn,m + ∂ηηSn,m + 2q [cosh(2ξ)− cos(2η)] Sn,m = 0 , so we
obtain ∫ ξo

ξi

∫ 2π

0
[∂ξξy(ξ, η) + ∂ηηy(ξ, η)]Sn,m(k1, k2, ξ, η, qn,m) dξ dη

= −2qn,mv +
∫ 2π

0
(h/

√
2)

√
cosh 2ξ − cos 2η {Sn,m(k1, k2, ξi, η, qn,m)

×[k2∂ξy + y]ξ=ξidη + Sn,m(k1, k2, ξi, η, qn,m) [k1∂ξy + y]ξ=ξo}.
(49)

Convergence
In order to portray the solution to be meaningful, the series expressed in equation (21)
should converge for all ξi ≤ ξ ≤ ξo and 0 ≤ η ≤ 2π. The temperature equation (21) can
be expressed as

θ (ξ, η, t) =
M∑
n=0

M ′∑
m=1

χ̄ (n,m, t)

αn,mCn,m

Sn,m(k1, k2, ξ, η, qn,m) exp(−αn,m t)

× exp[

∫ t

0

ψ (ζ) dζ]. (50)

But it should be noted that Cen(ξi, qn,m) = 0 (for n = 0, 1, 2, 3..) and Cen(η, qn,m) = 0
(for 0 ≤ η ≤ 2π). The above roots define a series of a confocal nodal hyperbola. Now,
Cen(η, qn,m), each have n zeros in 0 ≤ η ≤ 2π so for a given n, each function gives rise
to a n nodal hyperbolas, Thus from above it is clear that Sn,m(k1, k2, ξ, η, qn,m) → 0
as n → ∞, m → ∞. Also, from orthogonally property, Cn,m ̸= 0, which shows that
θ (ξ, η, t) converges with the finite value as n → ∞, m → ∞. Thus, from physical
consideration, it is clear that θ (ξ, η, t) must be continuous function of (ξ, η) within the
ellipse and it vanishes on the boundary. Thus, any function of (ξ, η) continuous and single
valued within the ellipse and vanishes on the boundary may be expanded at any point of
the interior in the form of the double series given in inversion theorem, which proves the
convergence of modified Mathieu function.


