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1 Introduction

Our purpose is to study chemotaxis systems with source terms. Such models have
been proposed in the field of mathematical biology (see, for example [13] concerning the
growth case) provided with diffusion, chemotaxis, and self-dissipation or growth. Several
transient patterns are observed both numerically and theoretically.

A typical example is

ut = d∆u− χ∇ · u∇v + αf(u), in Ω× (0, T ),

d
∂u

∂ν
− χu

∂v

∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0, (1)

with

−∆v = u− u in Ω× (0, T ), v = 0,
∂v

∂ν

∣∣∣∣
∂Ω

= 0, (2)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, ν is the outer unit normal
vector, d, χ, α > 0 are constants, u0 = u0(x) is a sufficiently regular function on Ω, and

w =
1

|Ω|

∫
Ω

w

for w = w(x). Here, u = u(x, t) stands for the density of some biological species. The
nonlinearity f = f(u) is a smooth function of u ≥ 0 satisfying f(0) ≥ 0 which guarantees
u = u(x, t) > 0. The second equation (2) may be replaced by

−∆v = u, v|∂Ω = 0 (3)

or

τvt −∆v = u− u,
∂v

∂ν

∣∣∣∣
∂Ω

= 0, v|t=0 = v0(x) (4)

where τ > 0 is a constant and v0 = v0(x) is a smooth function.

Known results

In a series of papers, J.I. Tello and M. Winkler [20, 21, 22, 23] studied the global-in-
time existence of the solution to such models. For example, if (2) is replaced by

−∆v + v = u in Ω× (0, T ),
∂v

∂ν

∣∣∣∣
∂Ω

= 0, (5)

the global-in-time solution exists and is uniformly bounded, provided that

αf(u) ≤ a− µu2, u ≥ 0 (6)

with a > 0, µ > 0, and µ > (1 − 2
n
)χ (see [20]). If µ = (1 − 2

n
)χ, the solution to (1)

with (5) for (6) is still global-in-time, but may not be uniformly bounded (see the proof
of Theorem 3 of [9], dealing with the case of αf(u) = ru− µu2 for r ≥ 0). More recently,
M.A.J. Chaplain and J.I. Tello in [4] studied a model where (2) is replaced by (5) but
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instead of the linear reaction term v they have a more general term h(v) which is a locally
Lipschitz function and its derivative is bounded. They proved the existence of a unique
solution and the asymptotic convergence to the steady states. Also recently, X. He and S.
Zheng in [7] proved for the parabolic-elliptic model (that is (1) coupled with (5)), under
some assumptions, that the positive constant equilibrium is a global attractor. They also
proved for the parabolic-parabolic system, again under some assumptions on µ and a,
that it admits the non-trivial positive constant equilibrium as a global attractor.

Concerning the system composed of (1) and

τvt −∆v + v = u,
∂v

∂ν

∣∣∣∣
∂Ω

= 0, v|t=0 = v0(x), (7)

furthermore, any a ≥ 0 admits µ0 > 0 such that the solution exists global-in-time and is
bounded if µ ≥ µ0 and Ω is convex, where τ > 0 is a constant (see [21]). On the other
hand, parabolic-parabolic models with general sources and general sensitivity functions
are studied by [16, 17]. Namely, in the case of n ≤ 2, the global-in-time solution to (1)
with (7) exists if f(0) = 0 and f(u) = (−µu + β)u, u ≫ 1, for some constants µ, β > 0.
Here, the sensitivity function χ = χ(u) can be nonlinear, as far as its derivatives up to
the third order are bounded. This solution, however, may not be uniformly bounded as
t ↑ +∞. Recently, Lin and Mu in [12] also considered the parabolic-parabolic system
with homogeneous Neumann conditions and for the dimensions N = 2, 3, the proved the
global existence and boundedness of classical solutions, provided that µ and a satisfy some
explicit conditions.

It seems that the existence of any uniformly bounded global-in-time solution has not
yet been confirmed to (1)-(2) for the above profile of f(u), that is, the Fisher type non-
linearity. On the contrary, we have radially symmetric blowup solutions in the case that
f(u) = λu− µuκ with λ ≥ 0, µ > 0, 1 < κ < 3

2
+ 1

2n−2
, and n ≥ 5 (see [22]).

Main results

In this paper, we are mostly concerned with the quadratic dissipation f(u) = −u2 and
the logistic source f(u) = u− u2. For these nonlinearities we can show that the solution
is global-in-time and uniformly bounded if either n ≤ 2 or α > χ. Both parabolic-elliptic
and parabolic-parabolic chemotaxis systems with the above reaction terms were studied.
The main novelty of this work is the proof of the global existence and the study of the
asymptotic behavior of the solution which is clarified in several cases.

Quadratic dissipation

First, for the quadratic dissipation, this system takes the form

ut = d∆u− χ∇ · u∇v − αu2, −∆v = u− u,

∫
Ω

v = 0 in Ω× (0, T ),

∂

∂ν
(u, v)

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0, (8)
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which implies

ut = d∆u− χ∇u · ∇v − χuu+ (χ− α)u2,
∂u

∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0. (9)

Then the standard comparison theorem guarantees

U−(t) ≤ u(x, t) ≤ U+(t) (10)

where U = U±(t) are spatially homogeneous solutions to (9), that is,

dU

dt
= −χu(t)U + (χ− α)U2, (11)

satisfying U−|t=0 = minΩ u0 and U+|t=0 = maxΩ u0. If δ = α−χ ≥ 0 is the case, therefore,
we have T = +∞. This solution satisfies

∥u(·, t)∥∞ ≤ (∥u0∥−1
∞ + δt)−1. (12)

In fact we obtain
dU+

dt
≤ −δU2

+, U+|t=0 = ∥u0∥∞

by (11), and then (12) follows from U+(t) ≤ (∥u0∥−1
∞ + δt)−1.

The first theorem, however, assures global-in-time existence of the solution and its
uniform convergence to 0 as t ↑ +∞ for any parameter region of d, χ, α > 0, in the case
of n ≤ 2.

Theorem 1. If n ≤ 2, it holds that T = +∞ and limt↑+∞ ∥u(·, t)∥∞ = 0 in (8).

From the proof, we see that the comparison function U−(t) in (10) must remain
bounded for any dimension n (see Remark 2 below). Actually we do not expect blowup
of the solution to (8) even if n ≥ 3.

Theorem 1 is valid to the other models, that is (1) coupled with either (3) or (4)
(see Remark 1 and Theorem 5 below). Even in higher space dimensions, the condition
δ = α − χ > 0 is not essential for T = +∞ and limt↑+∞ ∥u(·, t)∥∞ = 0 to hold. The
second theorem is an extension of α > χ for T = +∞ or limt↑+∞ ∥u(·, t)∥∞ = 0 to hold.
This theorem also contains Theorem 1 concerning n ≤ 2.

Theorem 2. The same conclusion as in Theorem 1 holds to (8) even for n ≥ 3, provided
that α > (1− 2

n
)χ.

An analogous result to Theorem 2 is known for (1) with (5) (see Theorem 2.5 of [20]).
It is also valid to (1) with either (2) or (3) (see Remark 3 below).

Logistic source

If f(u) stands for the logistic source in (1)-(2), we have

ut = d∆u− χ∇ · u∇v + α(u− u2), −∆v = u− u, v = 0 in Ω× (0, T ),

∂

∂ν
(u, v)

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0, (13)
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which implies

ut = d∆u− χ∇u · ∇v − χuu+ αu+ (χ− α)u2,
∂u

∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0. (14)

From the classical comparison theorem, therefore, we have 0 < u(x, t) ≤ U(t) for U = U(t)
satisfying

dU

dt
= αU + (χ− α)U2, U |t=0 = ∥u0∥∞, (15)

and therefore, α > χ implies

T = +∞, ∥u(·, t)∥∞ ≤ max{1− χ

α
, ∥u0∥∞}

similarly to (12).
The spatially homogeneous part of (13),

du

dt
= α(u− u2), (16)

is nothing but the logistic ODE. It is well-known that any positive solution to (16) con-
verges to 1 as t ↑ +∞. The following theorems provide with some criteria for this property
to (13). However, we cannot apply any comparison theorems between (16) and (1) with
(2) (or (1) with any one of (3), (4), and (5)).

The first theorem on (13), Theorem 3 below, is concerned with the case α > χ.
As we have seen above, in this case any solution to (13) is always global-in-time and
uniformly bounded. The point in this theorem, therefore, is its uniform convergence to 1.
Henceforth, Ci, i = 1, 2, · · · , 40, denote positive constants independent of t.

Theorem 3. If α > χ, it holds that

∥u(·, t)− 1∥∞ ≤ C1e
−δt (17)

in (13), where δ > 0 is a constant.

The proof of Theorem 3 is valid to (1) with (3) or (5) (see Remark 4 below). In
particular, the criterion α > 2χ for limt↑+∞ ∥u(·, t)− 1∥∞ = 0 to occur in (1) with (5) is
relaxed as α > χ (see Theorem 5.1 of [20] for a proof of the former case).

Theorem 4 below, may be compared with Theorem 2 for the quadratic dissipation
case.

Theorem 4. If α > (1 − 2
n
)χ, it holds that T = +∞ and ∥u(·, t)∥∞ ≤ C2 in (13). If

n ≤ 2, there is d0 = d0(χ, α) > 0, such that d > d0 implies (17) with δ > 0.

Concerning (1) with (4), if n = 1 we have the same property. Thus, the solution is
global-in-time. If d ≫ 1, furthermore, then (17) holds (see Theorem 6 below). The above
Theorems 3 and 4, however, do not cover all the cases, and there may be blowup of the
solution to (13), if either χ > α, or n ≥ 3, or 0 < d ≪ 1.

This paper is composed of four sections. Section 2 is focused on problem (8) and
Theorems 1 and 2 are proven. Section 3 deals with problem (13). Theorems 3 and 4 are



212

proven there. The last section, §4, is devoted to a remark on the blowup or quenching of
the solution. In the following we use

∥f∥q =
(

1

|Ω|

∫
Ω

|f |q
)1/q

, 1 ≤ q < ∞

and

(f, g) =
1

|Ω|

∫
Ω

fg.

2 Quadratic Dissipation Case

This section is devoted to the case f(u) = −u2. First, we show the following proof.

Proof of Theorem 1. We multiply the first equation of (1) with log u, integrate over Ω
and use Green’s identity to derive:

d

dt

1

|Ω|

∫
Ω

u(log u− 1) dx+ 4d∥∇u1/2∥22 + α(u2, log u) = χ(∇u,∇v)

= χ(−∆v, u) = χ
(
∥u∥22 − u2

)
. (18)

By integrating the first equation of (1) over Ω, on the other hand, we have

du

dt
= −α∥u∥22 ≤ −αu2

and hence

u(t) ≤ (u−1
0 + αt)−1,

∫ T

0

∥u(·, t)∥22dt ≤ α−1u0. (19)

Noticing
αu2 log u ≥ u(log u− 1)− C3, ∀u > 0, (20)

we put

H(t) =
1

|Ω|

∫
Ω

u(log u− 1)− C3 dx.

Then it holds that
dH

dt
+H ≤ ∥u∥22,

which implies

H(t) ≤ e−tH(0) +

∫ t

0

e−(t−s)∥u(·, s)∥22ds ≤ e−tH(0) +

∫ t

0

∥u(·, s)∥22ds ≤ C4.

Thus we obtain ∫
Ω

u(log u− 1) + 1 dx ≤ C5. (21)

By (21) we can argue similarly to the chemotaxis systems without source terms [2, 5, 15]
(see also Chapter 4 of [18]). Below we describe the proof for n = 2, because the case
n = 1 is simpler.
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First, we multiply up, p > 0, to (8) and obtain

1

p+ 1

d

dt
∥u∥p+1

p+1 +
4pd

(p+ 1)2
∥∇u

p+1
2 ∥22 ≤

pχ

p+ 1

1

|Ω|

∫
Ω

∇v · ∇up+1

=
pχ

p+ 1

1

|Ω|

∫
Ω

(−∆v) · up+1 ≤ pχ

p+ 1
∥u∥p+2

p+2. (22)

For p = 1, this inequality means

d

dt
∥u∥22 + 2d∥∇u∥22 ≤ χ∥u∥33. (23)

Taking s > 1, we apply the other form of the Gagliardo-Nirenberg inequality

∥z∥p ≤ C6(p, q,Ω)∥z∥1−a
q ∥z∥aH1(Ω), 1 ≤ q ≤ p < ∞, a = 1− q

p
(24)

for z = χu>su and q = 1, p = 3, where χu>s denotes the indicator of the set {x ∈ Ω |
u(x) > s}. Thus, it holds that

∥u∥33 = ∥χu>su∥33 + ∥χu≤su∥33 ≤ C7∥χu>su∥2H1(Ω)∥χu>su∥1 + s3|Ω|

≤ C7

log s
∥u∥2H1(Ω)∥u log u∥1 + s3|Ω|. (25)

We also use Poincaré-Wirtinger’s inequality

µ2∥z − z∥22 ≤ ∥∇z∥22 (26)

to deduce

∥χu>su∥2H1(Ω) ≤ ∥u∥2H1(Ω) = ∥∇u∥22 + ∥u∥22 ≤ ∥∇u∥22 + 2(∥u− u∥22 + ∥u∥22)

≤
(
1 +

2

µ2

)
∥∇u∥22 + ∥u∥21. (27)

Here, µ2 > 0 denotes the first positive eigenvalue of −∆ on Ω provided with the Neumann
boundary condition.

By (25)-(27), it holds that

∥u∥33 ≤ C8

(
∥∇u∥22 + ∥u∥21

) 1

log s
∥u log u∥1 + s3|Ω|.

Using (19) and (21), therefore, we obtain

d

dt
∥u∥22 + d∥∇u∥22 ≤ C9

with s ≫ 1, and then it follows that

d

dt
∥u∥22 + µ2d∥u∥22 ≤ C10
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from (26) and (19). Thus we obtain

∥u∥2 ≤ C11 (28)

Inequality (28) implies ∥w∥4/3 ≤ C12 for w = u3/2, and then we can argue similarly,
using (22) for p = 2. Here, we use ∥u∥3 ≤ ∥w∥3 in (34), and then it follows that

∥u∥3 ≤ C13. (29)

Inequality (29) implies ∥v∥W 2,3(Ω) ≤ C14 by the elliptic estimate for the Poisson equation
(2), and then

∥∇v∥∞ ≤ C15 (30)

by Morrey’s inequality, which reduces (22) to

1

p+ 1

d

dt
∥u

p+1
2 ∥22 +

4pd

(p+ 1)2
∥∇u

p+1
2 ∥22 ≤

2pχC16

p+ 1
∥u

p+1
2 ∥2∥∇u

p+1
2 ∥2 (31)

by ∇up+1 = 2u
p+1
2 ∇u

p+1
2 . From (31) it follows that

d

dt
∥u

p+1
2 ∥22 + 2d∥∇u

p+1
2 ∥22 ≤ C17p

2∥u
p+1
2 ∥22, p ≥ 1.

Then we obtain ∥u(·, t)∥∞ ≤ C18 with T = +∞ by the iteration scheme (see [1]).
Therefore, the orbitO = {u(·, t)}t≥0 is compact in C(Ω), and hence limt↑+∞ ∥u(·, t)∥∞ =

0 follows from limt↑+∞ u(t) = 0.

Remark 1. Even in (1) with (3), inequality (22) is valid by
∂v

∂ν

∣∣∣∣
∂Ω

≤ 0. Then the same

conclusion arises as in Theorem 1 for this system. In the Debye system [3] (or DD (drift-
diffusion) model [8]), the second equation (3) is replaced by

∆v = u, v|∂Ω = 0. (32)

In this case the above calculation is invalid because of ∂v
∂ν

∣∣
∂Ω

≥ 0. Here we use

1

|Ω|

∫
Ω

∇v · ∇up+1 =
2

|Ω|

∫
Ω

u
p+1
2 ∇u

p+1
2 · ∇v ≤ 2∥∇u

p+1
2 ∥2∥u

p+1
2 ∥3∥∇v∥6

in (22). Regarding n = 2, we apply the Gagliardo-Nirenberg inequality in the form of

∥∇v∥6 ≤ C19∥∇v∥1/2W 1,3(Ω)∥∇v∥1/22 , (33)

and also the standard L3 estimate on the Poisson equation (2),

∥v∥W 2,3(Ω) ≤ C20∥u∥3. (34)

Then we use the elliptic estimate to (2) in the form of

∥∇v∥2 ≤ C21 ∥u∥L logL (35)
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valid to n = 2, where ∥ · ∥L logL denotes the Zygmund norm (see [19]). This inequality
implies ∥∇v∥2 ≤ C22 by (21), and hence

d

dt
∥u∥22 + d∥∇u∥22 ≤ C23∥u∥33

for p = 1. Then we can argue similarly, although inequalities (33) and (35) are restricted
to n ≤ 2. Thus, if n ≤ 2 and f(u) = −u2 any solution to (1) with (32) is global-in-time,
and converges to 0 uniformly as t ↑ +∞.

Remark 2. Inequality (21) holds in any space dimension and for any parameters d, χ, α >
0. Therefore, it holds that U−(t) ≤ C24 in (10).

Now we show the following proof.

Proof of Theorem 2. We may assume n ≥ 3, regarding Theorem 1. Taking into account
the dissipative term, inequality (22) becomes

1

p+ 1

d

dt
∥u∥p+1

p+1 +
4pd

(p+ 1)2
∥∇u

p+1
2 ∥22 + α∥u∥p+2

p+2 =
pχ

p+ 1

1

|Ω|

∫
Ω

∇v · ∇up+1

=
pχ

p+ 1
(−∆v, up+1) ≤ pχ

p+ 1
∥u∥p+2

p+2 (36)

by −∆v = u− u. From the assumption, there is p > n
2
− 1 such that

δ ≡ (p+ 1)

(
α− pχ

p+ 1

)
> 0.

Hence it follows that
dX

dt
+ δX1+γ ≤ 0

for X = ∥u∥p+1
p+1 and γ = 1

p+1
, which implies

Xγ(t) = ∥u(·, t)∥p+1 ≤ [X−γ(0) + δt]−1 = (∥u0∥−1
p+1 + δt)−1.

Now we use the Gagliardo-Nirenberg inequality in the form of

∥w∥33 ≤ C25(∥∇w∥22 + ∥w∥2n/2)∥w∥n/2 (37)

and then obtain (28) similarly. Continuing the process as in the proof of the previous
theorem, we reach (30) and then the conclusion follows.

Remark 3. The above proof of Theorem 2 is valid also to (1) with (5), that is, the model
studied by [20]. Here, the second equation (5) may be replaced by (2) or (3). In fact,
assuming (6), we put a = µ = 1 for simplicity. Then it holds that

1

p+ 1

d

dt
∥u∥p+1

p+1 +
4pd

(p+ 1)2
∥∇u

p+1
2 ∥22 + α∥u∥p+2

p+2 ≤
pχ

p+ 1
∥u∥p+2

p+2 + α∥u∥pp (38)

for (36). Assuming α > (1− 2
n
)χ also, we take p > n

2
− 1 and ε > 0 such that

δ ≡ (p+ 1)

(
α− pχ

p+ 1
− αpε

p+ 2

)
> 0.
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Then Young’s inequality implies

∥u∥pp ≤ ∥u∥pp+2 ≤
p

p+ 2
· ε∥u∥p+2

p+2 +
2

p+ 2
· ε−p(p+2)/2

∥u∥p+1
p+1 ≤ ∥u∥p+1

p+2 ≤
p+ 1

p+ 2
∥u∥p+2

p+2 +
1

p+ 2

and hence
dX

dt
+

p+ 2

p+ 1
δX ≤ C26 (39)

for X = ∥u∥p+1
p+1. Inequality (39) implies ∥u∥p+1 ≤ C27, p + 1 > n

2
. Then we obtain the

result similarly to the proof of Theorem 1, using (37).

The proof of Theorem 2, using the quadratic dissipation, provides with an alternative
proof of Theorem 1. The original proof of Theorem 1, however, is applicable to the
parabolic-parabolic system. We conclude this section with the following theorem.

Theorem 5. If n ≤ 2, it holds that T = +∞ and limt↑+∞ ∥u(·, t)∥∞ = 0 in (1) with (4).

Proof. Similarly to the previous proof, we multiply the first equation of (1) with log u,
integrate over Ω and use Green’s identity. It holds that

d

dt

1

|Ω|

∫
Ω

u(log u− 1) + 4d∥∇u1/2∥22 + α(u2, log u) = χ(∇u,∇v)

= χ(−∆v, u) = χ(−∆v, u− u) = χ(−∆v, τvt −∆v) =
τχ

2

d

dt
∥∇v∥22 + χ∥∆v∥22

≤ χ∥∆v∥2∥u∥2 ≤
χ

2
∥∆v∥22 +

χ

2
∥u∥22 (40)

by (∆v, u) = u · (∆v, 1) = 0. Thus we obtain

τ
d

dt
∥∇v∥22 + ∥∆v∥22 ≤ ∥u∥22,

or

(−∆v, u) =
τ

2

d

dt
∥∇v∥22 + ∥∆v∥22 ≤ ∥u∥22 −

τ

2

d

dt
∥∇v∥22.

Therefore, (40) becomes,

d

dt

1

|Ω|

∫
Ω

u(log u− 1) +
τχ

2
|∇v|2 dx+ 4d∥∇u1/2∥22 + α(u2, log u) ≤ χ∥u∥22.

By (20) it holds that
dH

dt
+H ≤ ∥u∥22 +

τχ

2
∥∇v∥22, (41)

where

H =
1

|Ω|

∫
Ω

u(log u− 1)− C28 +
τχ

2
|∇v|2 dx. (42)
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Equation (4) implies
dv

dt
= 0, (43)

while it follows (u, v) = (u, v) and hence

τ

2

d

dt
∥v∥22 + ∥∇v∥22 = (u− u, v) = (u, v − v) ≤ µ−1

2 ∥∇v∥2∥u∥2 ≤
1

2
∥∇v∥22 +

1

2µ2
2

∥u∥22

from (26). Since inequality (19) readily holds, we obtain∫ T

0

∥u∥22 + ∥∇v∥22 dt ≤ C29, (44)

which implies
H(t) ≤ C30 (45)

by (41).
We have also

τ∥vt∥22 +
1

2

d

dt
∥∇v∥22 = (u− u, vt) = (u, vt) ≤

τ

2
∥vt∥22 +

1

2τ
∥u∥22

because (43) implies (u, vt) = u · (1, vt) = 0, and hence∫ T

0

∥vt∥22 dt ≤ C31. (46)

Since n = 2, these inequalities (44), (45) with (42), and (46) imply T = +∞ with

∥u(·, t)∥∞ + ∥v(·, t)∥∞ ≤ C32 (47)

by Gagliardo-Nirenberg’s inequality, Moser’s iteration scheme, and the semi-group esti-
mate. The proof is similar to the case without the dissipative term (see [15]) and is
omitted.

Inequality (47) implies the compactness of the orbit {(u(·, t), v(·, t)}t≥0 in C(Ω)2, and
then limt↑+∞ ∥u(·, t)∥∞ = 0 follows similarly to Theorem 1.

3 Logistic Source Case

This section is devoted to the logistic source, f(u) = u− u2. First, we show the following
proof.

Proof of Theorem 3. We have readily shown the existence of uniformly bounded, global-
in-time solutions in the case of α > χ. Since

du

dt
≤ α(u− u2),

it holds that lim sup
t↑+∞

u(t) ≤ 1. Therefore, we may assume α > χ · c0 for c0 = max{1, u0},

in the case of α > χ.
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We have also u(t) ≤ max{1, u0} = c0, which implies

ut ≥ d∆u− χ∇u · ∇v − χc0u+ αu+ (χ− α)u2,
∂u

∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0

by (14). Therefore, it holds that

u(x, t) ≥ U−(t)

for U = U−(t) satisfying

dU

dt
= (α− c0χ)U + (χ− α)U2, U |t=0 = min

Ω
u0. (48)

Using the assumption α > c0χ, therefore, we have U−(t) ≥ δ, and hence

T = +∞, δ ≤ u(x, t) ≤ C33 (49)

for δ = min{α−c0χ
α−χ

,minΩ u0} > 0 and C33 > 0 independent of (x, t).
Let w = u− 1 ≥ −1. Since

−∆v = w − w,
∂v

∂ν

∣∣∣∣
∂Ω

= 0,

∫
Ω

v = 0, (50)

it follows that

wt = d∆w − χ∇ · (w + 1)∇v + α((w + 1)− (w + 1)2)

= d∆w − χ∇ · w∇v + (χ− α)w − χw − αw2,
∂

∂ν
(w, v)

∣∣∣∣
∂Ω

= 0. (51)

Letting w± = max{w, 0}, we multiply wp
±, p > 0, to (51). Then it follows that

1

p+ 1

d

dt
∥w±∥p+1

p+1 +
4pd

(p+ 1)2
∥∇w

p+1
2

± ∥22 +
(
α− χp

p+ 1

)
∥w±∥p+2

p+2 + (α− χ)∥w±∥p+1
p+1

+w

(
χp

p+ 1
∥w±∥p+1

p+1 + ∥w±∥pp
)

= 0

by

−(∇ · w∇v, w±) = (w∇v,∇w±) =
1

2
(∇v,∇w2

±) =
1

2
(w − w,w2

±) =
1

2
(∥w±∥33 − w∥w±∥22).

Therefore, it holds that

1

p+ 1

d

dt
∥w∥p+1

p+1 +

(
α− χp

p+ 1

)
∥w∥p+2

p+2 +

(
α− χ+

χpw

p+ 1

)
∥w∥p+1

p+1

+w∥w∥pp ≤ 0. (52)

Now we show
lim
t↑+∞

w(t) = 0. (53)
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In fact, first, we have
dw

dt
+ αw = −α∥w∥22 ≤ 0

and hence

lim sup
t↑+∞

w(t) ≤ 0. (54)

Then we write (51) as

wt = d∆w − χ∇v · ∇w − (w + 1) ((α− χ)w + χw) ,
∂w

∂ν

∣∣∣∣
∂Ω

= 0,

using (50).
Since δ ≤ w + 1 ≤ C33 and (54), any ε > 0 admits T > 0 and W = W (t), t ≥ T , such

that

w(·, t) ≥ W (t) ≥ δ − 1, t ≥ T

and
dW

dt
= −(α− χ)W (W + 1)− ε.

Recalling α > χ, we obtain

lim inf
t↑+∞

w(t) ≥ a(ε)

for 0 < ε ≪ 1, where W = a(ε) denotes the larger zero of

(α− χ)W (W + 1) = −ε.

It follows that

lim inf
t↑+∞

w(t) ≥ 0 (55)

with ε ↓ 0, and then inequalities (54) and (55) imply (53).
Here we put X = ∥w∥p+1

p+1, γ = 1
p+1

, and δ = α−χ
2

> 0, noting ∥w∥pp ≤ ∥w∥pp+1. By

(52)-(53), any ε > 0 admits T > 0 such that

γ
dX

dt
+ δX ≤ εX1−γ, t ≥ T (56)

for any p ≥ 1. Inequality (56) means

dY

dt
+ εY 2 ≥ δY, t ≥ T

or
dY −1

dt
+ δY −1 ≤ ε, t ≥ T

for Y = X−γ = ∥w∥−1
p+1, which implies

Y −1(t) ≤ e−δ(t−T )Y −1(T ) +
ε

δ

(
1− e−δ(t−T )

)
.
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Thus we end up with

∥w(·, t)∥p+1 ≤ e−δ(t−T )∥w(·, T )∥p+1 +
ε

δ

(
1− e−δ(t−T )

)
, t ≥ T.

Sending p ↑ +∞, t ↑ +∞, and ε ↓ 0, we obtain lim supt↑+∞ ∥w(·, t)∥∞ ≤ 0, and hence

lim
t↑+∞

∥u(·, t)− 1∥∞ = 0. (57)

Once (57) is established, the linearization theory assures the exponential decay. Here
we rewrite (51) as

wt = d∆w − (α− χ)w − χw − F (w),
∂w

∂ν

∣∣∣∣
∂Ω

= 0 (58)

for F (w) = χ∇ · w∇(−∆)−1w + αw2, where v = (−∆)−1w denotes that v is the solution
to (50). Its linear part takes the form

wt = d∆w − (α− χ)w − χw,
∂w

∂ν

∣∣∣∣
∂Ω

= 0, w|t=0 = w0 (59)

and the solution to (59) is written as w(·, t) = etLw0, where L is a self-adjoint operator
in L2(Ω) with compact resolvent. Since |w(t)| ≤ |w0|e−αt holds in (59) by

dw

dt
= −αw, w|t=0 = w0

the operator L is negative definite.
From the elliptic and parabolic regularity [6, 11], the convergence (57) implies that of

w(·, t) → 0 in C∞ topology. Then we have

F (w) = ∇(−∆)−1w · ∇w + (α− χ)w2

which implies

wt = L(t)w,
∂w

∂ν

∣∣∣∣
∂Ω

= 0

for L(t) = L+a(x, t)·∇+(α−χ)w(·, t), where a(·, t) = ∇(−∆)−1w(·, t) and w(·, t) converge
to zero in C∞ topology as t ↑ +∞. Hence there is δ > 0 such that ∥w(·, t)∥∞ ≤ C34e

−δt,
or (17), from the perturbation theory of spectrum of operators and the theory of evolution
equations (see [10, 24]).

Remark 4. The above proof is valid even to (1) with either (3) or (5). Hence we obtain
(17), provided that α > χ.

If χ > α, conversely, blowup of the solution U = U(t) occurs in (48), if

U0 >
c0χ− α

χ− α
. (60)

Any u0 = u0(x) > 0, however, does not satisfy (60) for U0 = minΩ u0 and c0 = max{1, u0}.
In fact we have the following proof.
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Proof of Theorem 4. In (13), equality (38) is replaced by

1

p+ 1

d

dt
∥u∥p+1

p+1 +
4pd

(p+ 1)2
∥∇u

p+1
2 ∥22 + α∥u∥p+2

p+2 ≤
pχ

p+ 1
∥u∥p+2

p+2 + α∥u∥p+1
p+1. (61)

We use

∥u∥p+1
p+1 ≤ ∥u∥p+1

p+2

p+ 1

p+ 2
· ε · ∥u∥p+2

p+2 +
ε−(p+1)(p+2)

p+ 2

for p > n
2
− 1, ε > 0 satisfying

α− pχ

p+ 1
− p+ 1

p+ 2
αε > 0

to obtain ∥u(·, t)∥p+1 ≤ C35. Then T = +∞ with ∥u(·, t)∥∞ ≤ C36 follows as in Remark
3.

We turn to the asymptotic behavior of the solution. We assure d0 = d0(χ, α) > 0
independent of the initial value such that 0 < d < d0 implies (17), assuming n ≤ 2.

Since
du

dt
= α(u− ∥u∥22) = α(u− u2 − ∥u− u∥22) ≤ α(u− u2) (62)

two cases arise, that is, u(t) ≥ 1 for t ∈ [0, T ) and u(t) < 1 for t ∈ (t1, T ) with some
t1 ∈ [0, T ). In the first case, it holds that

lim
t↑+∞

u(t) = 1 (63)

and then, we obtain (57) by the compactness of the orbit. This property implies (17)
similarly to the previous theorem.

In the second case of u(t) < 1, t ∈ (t1, T ), we use w = u− u to get

−∆v = w,
∂

∂ν
(v, w)

∣∣∣∣
∂Ω

= 0

and
du

dt
= α(u− u2 − ∥w∥22)

by (62). Then it follows that

wt = ut −
du

dt
= d∆u− χ∇ · u∇v + α(u− u2)− α(u− u2) + α∥w∥22

= d∆w − χ∇ · (w + u)∇v + α[(w + u)− (w + u)2]− α(u− u2) + α∥w∥22
= d∆w − χ∇ · w∇v + u(χ− 2α)w + α(w − w2) + α∥w∥22. (64)

Multiplying by w±, we obtain

1

2

d

dt
∥w±∥22 + d∥∇w±∥22 =

χ

2
∥w±∥33 + u(χ− 2α)∥w±∥22 + α(∥w±∥22 − ∥w±∥33) + α∥w±∥22∥w±∥1

≤ χ

2
∥w±∥33 + u(χ− 2α)∥w±∥22 + 2α∥w±∥22
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by

−(∇ · w∇v, w±) =
1

2
(∇v,∇w2

±) =
1

2
(−∆v, w2

±) =
1

2
∥w±∥33 (65)

and ∥w±∥1 ≤ 2u ≤ 2. Therefore, it holds that

1

2

d

dt
∥w∥22 + d∥∇w∥22 ≤ χ

2
∥w∥33 + (u(χ− 2α) + 2α) ∥w∥22

≤ Kχ∥∇w∥22 + (u(χ− 2α) + 2α) ∥w∥22 (66)

recalling n ≤ 2, where K > 0 is the constant arising in the Gagliardo-Nirenberg inequality
(24), that is, K = C6(p, q,Ω)

3 for p = 3, q = 1.
If (d−Kχ)µ2 > (χ− 2α)+ + 2α, therefore, we obtain

d

dt
∥w∥22 + δ∥w∥22 ≤ 0, t > t1

with δ > 0 by w = 0, recalling that µ2 > 0 denotes the first positive eigenvalue of −∆
provided with the Neumann boundary condition. Hence it follows that

∥w(·, t)∥22 ≤ C37e
−δt,

∫ T

0

∥w∥22 dt ≤ C38.

By (62), therefore, any ε > 0 admits T > 0 such that

du

dt
≥ α(u− u2)− ε, t ≥ T

which implies either
lim
t↑+∞

u(t) = 0 (67)

or (63). In the latter case we obtain (57) from the compactness of the orbit.
We shall show that (67) does not arise for χ ≥ α. In fact, in the reverse case of α > χ

Theorem 3 implies (17) concluding to a contradiction. Specifically, at first (13) implies

ut = d∆u− χ∇v · ∇u+ χu(u− u) + α(u− u2),
∂u

∂ν

∣∣∣∣
∂Ω

= 0,

and therefore, it holds that u(·, t) ≥ U(t) for U = U(t), satisfying

dU

dt
= χU(U − u) + α(U − U2) = U(α− χu+ (χ− α)U) (68)

with U |t=0 = minu0 > 0. The right-hand side on (68), however, is estimated below by
αU/2 in t ≫ 1 because of (63) and χ ≥ α. Then we obtain limt↑+∞ U(t) = +∞, and
hence limt↑+∞ u(t) = +∞ by u ≥ U , a contradiction.

Remark 5. The first part of the above proof shows that if n = 2, the global-in-time
classical solution exists without any restrictions on d, χ, and α. For this part, we may
apply the method used for the proof of Theorem 1. In particular, inequality (21) holds for
any n, and therefore, any spatially homogeneous sub-solution of u = u(x, t) is bounded.
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We conclude this section with the following theorem concerning the system (1) with
(4), that is,

ut = ∆u− χ∇ · u∇v + α(u− u2), τv −∆v = u− u in Ω× (0, T )

∂

∂ν
(u, v)

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) > 0, v|t=0 = 0. (69)

Theorem 6. If n = 1, any solution to (69) is global-in-time and uniformly bounded.
Furthermore, there is d0 = d0(χ, α) > 0 such that d > d0 implies (17) with δ > 0.

Proof. We modify the proof of Theroem 5, using

τ
d

dt
∥∇v∥22 + ∥∆v∥22 ≤ ∥u− u∥22, (−∆v, u− u) ≤ ∥u− u∥22 −

τ

2

d

dt
∥∇v∥22

derived from

(−∆v, u− u) =
τ

2

d

dt
∥∇v∥22 + ∥∆v∥22 ≤

1

2
∥∆v∥22 +

1

2
∥u− u∥22.

Then inequality (41) takes the form

dH

dt
+H ≤ ∥u− u∥22 +

τχ

2
∥∇v∥22

for H = H(t) defined by (42).
We have

τ

2

d

dt
∥v∥22 + ∥∇v∥22 = (u− u, v) ≤ ∥u− u∥2∥v∥2 ≤

1

2
∥∇v∥22 +

1

2µ2
2

∥u− u∥22

τ∥vt∥22 +
1

2

d

dt
∥∇v∥22 = (u− u, vt) ≤

τ

2
∥vt∥22 +

1

2τ
∥u− u∥22,

which implies ∫ T

0

∥∇v∥22 dt ≤ µ−2
2

∫ T

0

∥u− u∥22 dt+ τ∥v0∥22∫ T

0

∥vt∥22 dt ≤ τ−2

∫ T

0

∥u− u∥22 dt+ τ−1∥∇v0∥22. (70)

If ∫ T

0

∥u− u∥22 dt ≤ C39, (71)

we can argue similarly, and it holds that T = +∞ with ∥u(·, t)∥∞ ≤ C40. If

lim
t↑+∞

u(t) = 1, (72)

furthermore, then (17) follows.
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To establish (71)-(72), we have only to take the case u(t) < 1, t ∈ (t1, T ) for some
t1 ∈ (0, T ), and to derive (71). Then we use (64) with w = u − u. Equality (65) then
becomes

(−∆v, w2
±) = (w − τvt, w

2
±) ≤ ∥w±∥33 + τ∥vt∥2∥w±∥24. (73)

Thus we obtain

1

2

d

dt
∥w∥22 + d∥∇w∥22 ≤

χ

2
∥w∥33 + ((χ− 2α)+ + 2α) ∥w∥22 + ∥vt∥22 +

τ 2

4
∥w∥44

for (66). Then Gagliardo-Nirenberg inequality valid to n = 1,

∥w∥qq ≤ K∥∇w∥22∥w∥
q−2
1 , 2 ≤ q ≤ 4,

implies

1

2

d

dt
∥w∥22 + d∥∇w∥22 ≤

χ

2
K∥∇w∥22∥w∥1 + ((χ− 2α)+ + 2α) ∥w∥22

+∥vt∥22 +
τ 2

4
K∥∇w∥22∥w∥21.

Since ∥w∥1 ≤ 2∥u∥1 = 2u < 2, it holds that

1

2

d

dt
∥w∥22 + (d− χK − τ 2K)∥∇w∥22 ≤ ((χ− 2α)+ + 2α) ∥w∥22 + ∥vt∥22

and hence

{(
d− τ 2K − χK

)
µ2 − (χ− 2α)+ − α

}∫ T

0

∥u− u∥22 dt ≤
∫ T

0

∥vt∥22 dt

for d > (τ 2 + χ)K, recalling (26). Then (71) follows from (70), provided that d is
sufficiently large as (

d− (τ 2 + χ)K
)
µ2 > (χ− 2α)+ + 2α + τ−2.

The proof is complete.

4 A Remark

Here we show the following theorem.

Theorem 7. If f = f(s), s ≥ 0, is concave, f(0) < −4d
α
n(n − 1), and f ′(0) > 0, then

there is a solution which is not global-in-time to (1)-(2).

We use the following lemma.
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Lemma 1. Let n ≥ 2, Ω = B ≡ B(0, 1), and u0 = u0(r), r = |x|, or n = 1, Ω = (−1, 1),
n = 1, and u0(−x) = u0(x), in (1)-(2). Assume, furthermore, that f = f(u) is concave.
Then it holds that

dX

dt
≤ 4dn(n− 1)u+ χuX − χu2 + αf(X) (74)

in (1)-(2), where

X =

∫
Ω
rnu∫

Ω
rn

. (75)

Proof. First, we have

−rn−1vr(r, t) =

∫ r

0

sn−1(u(s, t)− u(t))ds =

∫ r

0

sn−1u(s, t)ds− rn

n
u(t)

by (2), which implies∫ 1

0

r2(n−1)uvrdr =
u

n

∫ 1

0

r2n−1udr −
∫ 1

0

rn−1u(r, t)dr ·
∫ r

0

sn−1u(s, t)ds

=
u

n

∫ 1

0

r2n−1u dr − 1

2

(∫ 1

0

rn−1u(r, t) dr

)2

.

Then it follows that

d

dt

∫
Ω

rnu =

∫
Ω

|x|n (∇ · (d∇u− χu∇v) + αf(u)) =

∫
Ω

−∇|x|n · (d∇u− χu∇v) + αrnf(u) dx

=

∫
Ω

−dnrn−2x · ∇u+ χnrn−1uvr + αrnf(u) dx =

∫
∂Ω

−dnrn−2(x · ν)u

+

∫
Ω

dnu∇ · rn−2x+ αrnf(u) dx+ χnωn−1

{
u

n

∫ 1

0

r2n−1u dr − 1

2

(∫ 1

0

rn−1u dr

)2
}
,

where ωn−1 denotes the (n− 1)-dimensional volume of ∂Ω. By ∇ · rn−2x = 2(n− 1)rn−2

and |Ω| = ωn−1

n
, we obtain

d

dt

1

|Ω|

∫
Ω

rnu = − dn2

|∂Ω|

∫
∂Ω

u+
1

|Ω|

∫
Ω

dn(n− 1)rn−2u+ αrnf(u) dx

+
χu

|Ω|

∫
Ω

rnu− χu2

2
. (76)

Here we multiply both sides by 2, regarding

∫
Ω

rn =
ωn−1

2n
. Then (74) follows from the

concavity of f = f(u).

Now we give the following proof.
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Proof of Theorem 7. By (74) we have

1

α

dX

dt
≤ χ

α

{
−
(
u− X

2

)2

+
X2

4
+

4d

χ
n(n− 1)

}
+ f(X)

≤ χ

α

{
X2

4
+

4d

χ
n(n− 1)

}
+ f(X) ≡ g(X).

From the assumption, we have g(0) < 0 < g′(0). Hence T < +∞ arises if X(0) ≪ 1.

Remark 6. Since the symmetry and the decreasing property of u0 = u0(x) is kept for
u = u(·, t), there may arise two cases if limt↑T X(t) = 0, that is, either limt↑T ∥u(·, t)∥∞ = 0
or limt↑T ∥u(·, t)∥∞ = +∞. In the latter case the blowup set is composed of the origin,
and a sufficient condition for this property is lim supt↑T u(t) > 0.
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