数学 内容解説資料V2
31/56

データの活用2 身のまわりの問題で,解決したい問題があるとき,その問題を解決していく方法の1つに,PPDACサイクルと呼ばれるものがある。このサイクルは,次の5つの手順があり,それぞれの頭かしら文も字じをとっている。身のまわりからデータを集め,分析しよう。目標7章 データの活用データの活用51015202511112251調べたことを, レポートにまとめました。みんなの反応の速さを知りたいと考えました。反応の速さを知るために, ルーラーキャッチの実験をクラスで行うことにしました。ほかのクラスと比べるために, ヒストグラムや度数折れ線に表し, 特徴を見つけました。 1年生全体と比べるために,新たな比べ方を考えました。集めたデータを値の小さい順に並べかえ, 度数分布表に表しました。ルーラーキャッチの例では生活の中,環かん境きょうや社会などにかかわる問題の中から,全体的な傾向や特徴を調べたり比べたりしたいことがらを見つける。テーマを決めるには,それに必要なデータを集められるかも考えておく。調べてみたいことを見つけ,「問題」と「予想」を考える。Problem(問題)どのようなデータをどのように収集するかを決める。正確なデータを集めるには,しっかりと調査計画を立て,手順にしたがって実じっ施ししていくことが重要になる。データの調査方法やルールを決めて,調査計画を立てる。Plan(計画)調査計画の手順にしたがいデータを収集し,データを集計・加工してまとめる。どんな方法で整理したら全体の傾向が読み取りやすく比べやすいかを考える。データを集めて整理する。Data(データ)データをまとめた表やグラフなどから,データについてどんな特徴が読み取れるかを見つける。まとめたデータを分析する。Analysis(分析)テーマ,調査方法,結果をまとめ,レポートなどで結論を作成し,発表する。分析の結果から,結論を出す。Conclusion(結論)新たな問題を見つける。Problem(問題)APPCPDA関連P.268拓たく真まさんは,みんながどのくらい家で勉強しているかを調べるために,自分の中学校の1年生全員に,平日1日に家で勉強する時間を聞きました。その結果みんなはどのくらい家で勉強しているのかな。みんなの勉強時間の アンケートをとってみたらどうかな。問題を見つけよう数学的活動QUESTION調べてみよう新たな問題を見つけようまとめよう問題を見直そう休日の勉強時間はどうなのかな。平日とはちがった結果になると思うな。中央値は,どの階級に入っているでしょうか。最頻値を求めましょう。拓真さんが平日1日に家で勉強する時間は65分です。1年生の中で長いといえるでしょうか。その理由も説明しましょう。123表17について,次の問いに答えなさい。2は右の表の通りです。この表から,どのようなことを調べればよいでしょうか。見方・考え方どこに着目して考えればいいかな。右の表を完成させて,平均値を求めましょう。1短い方にかたよっているけど,平均値で比べていいのかな。階級(分)階級値(分)度数(人)(階級値)×(度数)0~30152530~60452160~90751590~12010514120~1501358150~1801654180~2101951210~2402252計90表17 平日1日に家で勉強する時間以上未満階級(分)度数(人)0~302530~602160~901590~12014120~1508150~1804180~2101210~2402計90表16 平日1日に家で   勉強する時間以上未満510252平均値を求めればわかるかな。NEW[ P.251-252 ]相対度数の学習の中で,確率とみなして考察できる事象をスムーズに取り入れています。相対度数と確率事象を発展的に見る力をPPDACサイクルをもとに,データを分析する中で,批判的に考察できるようにしています。データの活用の扱い主体的に活動し,批判的に考察する力をつながるサポート次の表7は,A組のルーラーキャッチのデータの累積度数と累積相対度数を求めたものである。この表から,このデータの中央値が22cm 以上25cm 未満の階級に入っていることがわかる。また,10cm 以上22cm 未満の中に,全体の0.45,すなわち45%の値がふくまれていることがわかる。次の表8は,1年生のルーラーキャッチのデータです。表を完成させて,下の問いに答えなさい。累積相対度数は,小数第二位まで求めなさい。 度数分布表において,最小の階級から各階級までの度数を加えたものを累るい積せき度ど数すう という。また,最小の階級から各階級までの相対度数を加えたものを 累るい積せき相そう対たい度ど数すう という。 分布のようすを調べるために,累積度数や累積相対度数を用いることがある。問5例1累積度数・累積相対度数中央値は,どの階級1表8  1年生のルーラーキャッチのデータ階級(cm)度数(人)相対度数累積度数(人)累積相対度数10~1320.06020.0613~1630.10050.1616~1930.10080.2619~2260.19140.4522~2570.23210.6825~2850.16260.8428~3140.13300.9731~3410.03311.0034~3700.00311.00計311.00表7  A組のルーラーキャッチのデータ以上未満510[ P.242 ][ P.243 ]前ページの表8について,累積相対度数を度数折れ線に表すと,右の図のようになります。実際に,ペットボトルのキャップを50回投げて,表向きが出た相対度数を調べなさい。また,実験回数を100回,150回,200回,…と増やしたとき,表向きが出た相対度数がどのように変わるか調べなさい。相対度数は,小数第二位まで求めなさい。投げた回数50100150200250300350400450500表向きが出た回数表向きが出た相対度数表10 ペットボトルのキャップを投げる実験問6例2注意累積相対度数を折れ線で表すには,累積相対度数のヒストグラムの各長方形の右上の頂点を結ぶ。7章 データの活用データの傾向の調べ方00.100.200.301.000.900.800.700.600.500.401013161922252831図9 1年生のルーラーキャッチのデータ3437(cm )51015243ことがらの起こりやすさ右のようなペットボトルのキャップを投げる実験を100回行ったところ,表9のような結果になりました。このペットボトルのキャップを20回投げると,表向きが何回出ると予想できるでしょうか。QUESTION 回数相対度数表向きが出た回数250.25裏向きが出た回数690.69横向きが出た回数60.06表 9 ペットボトルのキャップを投げる実験表裏横100回投げて25回表向きが出たから, 4回に1回は表向きが出ているといえるね。20回投げたときも,同じ割合で表向きが出るといえるのかな。見方・考え方実際に実験して確かめることができるかな。NEW25

元のページ  ../index.html#31

このブックを見る